
Duration: 2 1⁄2 Hrs Marks: 75

N.B. : (1) All questions are compulsory.
(2) Figures to the right indicate marks.

1. (a) (8)Attempt any One of the following:

(i) Prove that the elimination of arbitrary function φ from the equation φ(u, v) = 0,
where u and v are functions of x, y and z (z is assumed to be a function of x
and y), gives the partial differential equation

∂(u, v)

∂(y, z)
∗ p+

∂(u, v)

∂(x, z)
∗ q =

∂(u, v)

∂(x, y)
.

Solution: Given

φ(u, v) = 0 (1)

We treat z as a function of x and y. (x and y as independent variables and
z as dependent variable).

So
∂y

∂x
= 0 and

∂x

∂y
= 0

Let
∂z

∂x
= p and

∂z

∂y
= q.

Since φ is a function of (u, v) and u, v are functions of x, y and z where z is
a function of x and y, differentiating φ(u, v) = 0 partially with respect to
x, we get

∂φ

∂x
=
∂φ

∂u

[
∂u

∂x
+
∂u

∂y

∂y

∂x
+
∂u

∂z

∂z

∂x

]
+
∂φ

∂v

[
∂v

∂x
+
∂v

∂y

∂y

∂x
+
∂v

∂z

∂z

∂x

]
= 0

0 = φu

(
ux + 0 + uzp

)
+ φv

(
vx + 0 + vzp

)
= 0

φu(ux + uzp) = −φv(vx + vzp)

φu

φv

= − vx + vzp

ux + uzp
(2)

Similarly, differentiating 1 with resepct to y, we get

∂φ

∂y
=
∂φ

∂u

[
∂u

∂x

∂x

∂y
+
∂u

∂y

∂y

∂y
+
∂u

∂z

∂z

∂y

]
+
∂φ

∂v

[
∂v

∂x

∂x

∂y
+
∂v

∂y

∂y

∂y
+
∂v

∂z

∂z

∂y

]
= 0

0 = φu

(
0 + uy ∗ 1 + uzq

)
+ φv

(
0 + vy ∗ 1 + vzq

)
= 0

1 of 22



φu(uy + uzq) = −φv(vy + vzq)

φu

φv

= − vy + vzq

uy + uzq
(3)

Taking ratio of (2) and (3),

− vx + vzp

ux + uzp
= − vy + vzq

uy + uzq

This implies

(vx + vzp)(uy + uzq) = (vy + vzq)(ux + uzp)

(uyvz − vyuz)p+ (uzvx − uxvz)q + uzvzpq = uxvy − uyvx + uzvzqp

(uyvz − vyuz)p+ (uzvx − uxvz)q = uxvy − uyvx

det

(
uy uz
vy vz

)
p+ det

(
uz ux
vz vx

)
q = det

(
ux uy
vx vy

)

∂(u, v)

∂(y, z)
∗ p+

∂(u, v)

∂(z, x)
∗ q =

∂(u, v)

∂(x, y)
(4)

(ii) If z = F (x, y; a) is a one-parameter family of solutions of the partial differential
equation f(x, y, z, p, q) = 0 where p = zx = Fx, q = zy = Fy, prove that the
envelope of this family, if it exists, is also a solution of f(x, y, z, p, q) = 0.

Solution: (Note: This is Lemma 1.3.1 from our syllabus.)
z = F (x, y; a) is a one-parameter family of solutions of f(x, y, z, p, q) = 0.
The envelope E of this family is obtained by eliminating a between

z = F (x, y; a), (5)

0 = Fa(x, y; a). (6)

The equation of E is found by solving Fa(x, y, a) = 0 for a as a function of
x and y, a = a(x, y) and then substituting into z = f(x, y; a).
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Hence the envelope E will be of the form z = G(x, y) = F (x, y, a(x, y)).
We want to show that z = F (x, y, a(x, y)) is a solution of f(x, y, z, p, q) = 0.
It is sufficient to show that p = Gx, q = Gy.
Now, G(x, y) = F (x, y, a(x, y)) =⇒ Gx = Fx+Fa∗ax = Fx+0∗ax = Fx = p
and Gy = Fy + Fa ∗ ay = Fx + 0 ∗ ay = Fy = q (as Fa = 0, Fb = 0).
Hence z = G(x, y) is also a solution of f(x, y, z, p, q) = 0

(b) (12)Attempt any Two of the following.

(i) Find a partial differential equation satisfied by z = f
(y
x

)
where f is real valued

function on R× R.

Solution: Let v =
y

x
. So

∂v

∂x
= − y

x2
,
∂v

∂y
=

1

x
.

The partial differential is given by

∂(z, v)

∂(x, y)
= 0

That is, vy p− vx q = 0

Substituting we get,
1

x
p−

(
− y

x2
q
)

= 0. The p.d.e. is x p+ y q = 0.

(ii) Find the singular integral of f(x, y, z, p, q) = z − px − qy − p2 − q2 = 0 using
the three equations : f(x, y, z, p, q) = 0, fp(x, y, z, p, q) = 0, fq(x, y, z, p, q) = 0.

Solution: We know that singular integral satisfies

f(x, y, z, p, q) = 0,
fp(x, y, z, p, q) = 0,
fq(x, y, z, p, q) = 0.


z − px− qy − p2 − q2 = 0,
−x− 2p = 0,
−y − 2q = 0.


This implies p = −x

2
, q = −y

2
.
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Hence the singular solution is

z − px− qy − p2 − q2 = 0

=⇒ z − x−x
2
− y−y

2
− x2

4
− y2

4
= 0

=⇒ z +
x2

4
+
y2

4
= 0

=⇒ 4z = −(x+ y)2

(iii) Solve the Lagrange’s partial differential equation tanx p+ tan y q = tan z.

Solution: tanx p+ tan y q = tan z
Lagrange’s auxiliary eqns are
dx

P
=
dy

Q
=
dz

R
.

dx

tanx
=

dy

tan y
=

dz

tan z
(1).

Taking the first two fractions, we get
dx

tanx
=

dy

tan y
.

sinx

sin y
= c1 (2)

Taking the first and the last from (1).
dx

tanx
=

dz

tanx
.

sinx

sin z
= c2 (3)

From (2) and (3), the required general
solution is

φ

(
sinx

sin y
,
sinx

sin z

)
= 0

Another form of the general
integral is
sinx

sin z
= φ

(
sinx

sin y

)

2. (a) (8)Attempt any One of the following:

(i) (I) If p = φ(x, y, z) and q = ψ(x, y, z) are obtained by solving
f(x, y, z, p, q) = 0, g(x, y, z, p, q) = 0 for p and q then state the necessary
and sufficient condition for the equation dz = φ(x, y, z) dx + ψ(x, y, z) dy

4 of 22



to be integrable.

(II) Show that the first order partial differential equations p = M(x, y) and

q = N(x, y) are compatible if and only if
∂M

∂y
=
∂N

∂x
.

Solution:

[f, g] =
∂(f, g)

∂(x, p)
+
∂(f, g)

∂(z, p)
p+

∂(f, g)

∂(y, q)
+
∂(f, g)

∂(z, q)
q = 0.

p = M(x, y) and q = N(x, y)
We write these equations in the form f = 0 and g = 0.
Therefore the two equations are f = p−M(x, y) = 0 and g = q−N(x, y) =
0.

First we will show that
∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)
+
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)
= Nx−My

∂(f, g)

∂(x, p)
=

∣∣∣∣ fx fp
gx gp

∣∣∣∣
=

∣∣∣∣ Mx 1
−Nx 0

∣∣∣∣
= Nx

∂(f, g)

∂(z, p)
=

∣∣∣∣ fz fp
gz gp

∣∣∣∣
=

∣∣∣∣ 0 1
0 0

∣∣∣∣
= 0

∂(f, g)

∂(y, q)
=

∣∣∣∣ fy fq
gy gq

∣∣∣∣
=

∣∣∣∣ −My 0
−Ny 1

∣∣∣∣
= −My

∂(f, g)

∂(z, q)
=

∣∣∣∣ fz fq
gz gq

∣∣∣∣
=

∣∣∣∣ 0 0
0 1

∣∣∣∣
= 0

Hence
∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)
+
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)
= Nx + p ∗ 0−My + q ∗ 0 =
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Nx −My (∗)
Now, Suppose the first order partial differential equations p = M(x, y) and
q = N(x, y) are compatible.
Therefore f = p−M(x, y) = 0 and g = q −N(x, y) = 0 are compatible.

Hence
∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)
+
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)
= 0

Hence Nx −My = 0. Thus Nx = My. That is, Hence
∂M

∂y
=
∂N

∂x
.

Conversely, suppose
∂M

∂y
=
∂N

∂x
.

To show that f = p−M(x, y) = 0 and g = q−N(x, y) = 0 are compatible.

• To show that
∂(f, g)

∂(p, q)
6= 0.

∂(f, g)

∂(p, q)
=

∣∣∣∣ fp fq
gp gq

∣∣∣∣
=

∣∣∣∣ 1 0
0 1

∣∣∣∣
= 1 6= 0 on any domain D.

• To show that
∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)
+
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)
= 0

∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)
+
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)
= Nx −My from ∗

∂N

∂x
=
∂M

∂y

= 0

Hence f = 0 and g = 0 are compatible.

(ii) State Charpit’s Auxiliary equations and explain the Charpit’s method to find
a complete integral of a given partial differential equation f(x, y, z, p, q) = 0.

Solution:
dx

fp
=
dy

fq
=

dz

pfp + qfq
= − dp

fx + pfz
= − dq

fy + qfz
=

dz

pfp + qfq
=
dg

0
(7)

Since any of the integrals of 7 will satisfy ??, we will find an integral of
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7 which involves p or q or both. Thus we will get the required equation
g(x, y, z, p, q) = 0

The equation 7 is called Charpit’s Auxiliary equations.
Note that we want the functions p = φ and q = ψ. We can find p = φ
(or q = ψ) from the Charpit’s Auxiliary equations and then substitute the
value of p = φ (or q = ψ) in f = 0 to get q = ψ (or p = φ). Working Rules
while using Charpit’s Method

STEP 1 Write the given partial differential equation in the form f = 0.

STEP 2 Find all the values required in Charpit’s Auxiliary equation.

STEP 3 Write the Charpits’ Auxiliary equation using the above values.

STEP 4 Select two proper fractions so that we can easily find the integral
g = 0 involving at least one of p and q.

STEP 5 Solve the equations f = 0 and g = 0 for p and q and get the
functions p = φ and q = ψ.

STEP 6 Write the Pfaffian differential equation dz = φ dx+ ψ dy.

STEP 7 Integral of this equation is our required complete integral of f =
0.

(b) (12)Attempt any Two of the following.

(i) Solve the compatible partial differential equations xp−yq = x and x2p+q = xz
and find a common solution.

Solution:

STEP 1 Solve the two equations for p and q.
Here xp = x+yq substitue in x2p+q = xz =⇒ x(x+yq)+q = xz =⇒

x2+xyq+q = xz. This means q(xy+1) = x(z−x). So, q =
x(z − x)

xy + 1
.

This implies xp = x+
xy(z − x)

xy + 1
=⇒ p = 1+

y(z − x)

xy + 1
=⇒ p =

1 + zy

1 + xy

STEP 2 Construct the Pfaffian differential equation dz = φ dx+ ψ dy.

That is, dz =
1 + zy

1 + xy
dx +

x(z − x)

1 + xy
dy =⇒ z dz = d(xy) =⇒ z2 =
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2xy + c

(1 + xy) dz = (1 + zy) dx+ x(z − x) dy

(1 + xy) dz = dx+ zy dx+ xz dy − x2 dy
(1 + xy) dz = dx+ z(y dx+ z dy)− x2 dy

(1 + xy) dz − z(y dx+ z dy) = dx− x2 dy
(1 + xy) dz − z(y dx+ z dy)

(1 + xy)2
=
dx− x2 dy
(1 + xy)2

d

(
z

(1 + xy)

)
=

1
x2dx− dy(

1
x

+ y
)2

d

(
z

(1 + xy)

)
= −
− 1

x2dx+ dy(
1
x

+ y
)2

d

(
z

(1 + xy)

)
= d

(
1

1
x

+ y

)

On integrating, we get,
z

(1 + xy)
=

1
1
x

+ y
+ c.

z

(1 + xy)
=

x

1 + xy
+ c.

STEP 3
z

(1 + xy)
=

x

1 + xy
+ c is the required solution.

(ii) Show that dz = φ(x, y, z) dx+ ψ(x, y, z) dy is integrable if and only if

−φ ψz + ψ φz − ψx + φy = 0.
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Solution: where X = (φ(x, y, z), ψ(x, y, z),−1).

curl X = det


î ĵ k̂

∂

∂x

∂

∂y

∂

∂z

P Q R



= det


î ĵ k̂

∂

∂x

∂

∂y

∂

∂z

φ ψ −1



=
( ∂
∂y

(−1)− ∂

∂z
ψ
)̂
i−
( ∂
∂x

(−1)− ∂

∂z
φ
)̂
j +
( ∂
∂x

ψ − ∂

∂y
φ
)
k̂

= −ψz î + φz ĵ + (ψx − φy) k̂

= (−ψz, φz, ψx − φy)

X · curl X = (φ, ψ, − 1) · (−ψz, φz, ψx − φy)

= −φ ψz + ψ φz − ψx + φy

Hence dz = φ(x, y, z) dx+ψ(x, y, z) dy is integrable if and only if −φ ψz +
ψ φz − ψx + φy = 0.

(iii) Find a complete integral of x2p2 + y2q2 − 4 = 0.

Solution: We find all the values required in Charpit’s Auxiliary equation.
Charpit’s Auxiliary equations are

dx

fp
=
dy

fq
=

dz

(p fp + q fq)
= − dp

(fx + pfz)
= − dq

(fy + qfz)
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fp fq pfp + qfq fx + pfz fy + qfz

2x2p 2y2q p(2x2p) + q(2y2q) 2xp2 + p(0) 2yq2 + q(0)

2x2p 2y2q 2x2p2 + 2y2q2 2xp2 2yq2

dx

2x2p
=

dy

2y2q
=

dz

2(x2p2 + y2q2)
= − dp

2xp2
= − dq

2yq2

Consider first and fourth ratio.

dx

2x2p
= − dp

2xp2

dx

x
= −dp

p

Integrating both sides, we get, lnx = − ln p + ln a. This means xp = a.

That is, p =
a

x
.

Substituting this in f = x2p2 + y2q2 − 4 = 0, we get, x2
a2

x2
+ y2q2 − 4 = 0.

x2
a2

x2
+ y2q2 − 4 = 0

a2 + y2q2 = 4

q =

√
4− a2
y

Consider the Pfaffian differential equation dz = p dx+ q dy.

dz =
a

x
dx+

√
4− a2
y

dy

=⇒ z = a lnx+
√

4− a2 ln y + b

z = F (x, y; a, b) = a lnx +
√

4− a2 ln y + b is a complete integral of f =
x2p2 + y2q2 − 4 = 0

Note: If we consider second and fourth ratio, that is,
dy

2y2q
= − dq

2yq2
then

we get z = c ln y +
√

4− c2 lnx+ d as a complete integral.
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So, z = a lnx+
√

4− a2 ln y + b
and z = c ln y +

√
4− c2 lnx+ d

are complete integrals of f = x2p2 + y2q2 − 4 = 0.
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3. (a) (8)Attempt any One of the following.

(i) Consider the quasi-linear equation P (x, y, z) p+Q(x, y, z) q = R(x, y, z) where
P,Q and R are continuously differentiable functions on a domain Ω ⊆ R3. If
S : z = u(x, y) is the surface obtained by taking the union of characteristic
curves of the given p.d.e. where u(x, y) is a continuously differentiable function
then prove that S is the integral surface of the p.d.e.

Solution: We want to show that S is an integral surface.
Let A(x0, y0, u(x0, y0)) be any point on S.
We want to show that A satisfies the PDE P (x, y, z) p + Q(x, y, z) q =
R(x, y, z).
This means we want to show that

P (x0, y0, u(x0, y0)) ux(x0, y0) +Q(x0, y0, u(x0, y0)) uy(x0, y0) = R(x0, y0, u(x0, y0)).

Since S is a union of characteristic curves, there is a characteristic curve γA
passing through A that lies on S (curve is lying on S).
Since normal to S at A is in the direction (ux(x0, y0), uy(x0, y0),−1) and the

tangent to the curve γA atA is in the direction
(
P (x0, y0, u(x0, y0)), Q(x0, y0, u(x0, y0)), R(x0, y0, u(x0, y0))

)
,

the dot product of the two is 0.
Hence(
ux(x0, y0), uy(x0, y0),−1

)
·
(
P (x0, y0, u(x0, y0)), Q(x0, y0, u(x0, y0)), R(x0, y0, u(x0, y0))

)
= 0.

Thus

P (x0, y0, u(x0, y0))ux(x0, y0) +Q(x0, y0, u(x0, y0))uy(x0, y0) +R(x0, y0, u(x0, y0))(−1) = 0.

Hence A(x0, y0, u(x0, y0)) satisfies the PDE P (x, y, z) p + Q(x, y, z) q = R
where p = zx = ux, q = zy = uy.

(ii) Write a short note on the characteristic strip and characteristic curve for a non
linear first order partial differential equation f(x, y, z, p, q) = 0.

Solution: The characteristic differential equations related to the p.d.e.
f(x, y, z, p, q) = 0 are

dx

dt
= fp,

dy

dt
= fq,

dz

dt
= pfp + qfq,

dp

dt
= −fx − fz ∗ p,

dq

dt
= −fy − fz ∗ q,
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A solution (x(t), y(t), z(t), p(t), q(t)) of the above system of ordinary dif-
ferential equations can be interpreted as a strip. The first three functions
(x(t), y(t), z(t)) determine a space curve. At each point of this space curve,
p(t) and q(t) define a tangent plane with (p, q,−1) as the normal vector.
The curve along with these tangent planes at each point is called a charac-
teristic strip and the curve is called the characteristic curve.

Figure 1: Characteristic strip
Any set of five functions x(t), y(t), z(t), p(t) and q(t) of the above system
can be interpreted as a strip only if the following condition called the strip
condition

dz

dt
= p(t)

dx

dt
+ q(t)

dy

dt
(8)

is satisfied.

(b) (12)Attempt any Two of the following.

(i) Find the solution of the initial value problem for the quasi-linear equation
p− z q = −z for all y and x > 0 with the initial data curve
C : x0(s) = 0, y0(s) = s, z0(s) = −2s, −∞ < s <∞.

Solution: Here P (x, y, z) = 1, Q(x, y, z) = −z,R(x, y, z) = −z and
x0(s) = 0, y0(s) = s, z0(s) = −2s.
We will show that

dy0
ds

P
(
x0(s), y0(s), z0(s)

)
− dx0

ds
Q
(
x0(s), y0(s), z0(s)

)
6= 0 on (−∞, ∞).
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dy0
ds

P
(
x0(s), y0(s), z0(s)

)
− dx0

ds
Q
(
x0(s), y0(s), z0(s)

)
= (1)(1)− (0)

(
2s
)

= 1 6= 0 for −∞ < s <∞.

Now we will solve the following system


dx

dt
= 1

dy

dt
= −z

dz

dt
= −z.

with initial conditions, x(s, 0) = 0, y(s, 0) = s, z(s, 0) = −2s at t = 0.
The family of characteristic curves through the initial data curve is

dx

dt
= 1 =⇒ x = t+ c1 =⇒ x(s, o) = 0 + c1 =⇒ c1 = 0

=⇒ x = t (1)

dz

dt
= −z =⇒ ln z = −t+ ln c2 =⇒ e−t =

z

c2
=⇒ e0 =

−2s

c2
=⇒ c2 = −2s

=⇒ z = −2se−t (2)

dy

dt
= −z =⇒ dy

dt
= 2se−t =⇒ y = −2se−t + c3 =⇒ y(s, o) = −2s+ c3 =⇒ c3 = s+ 2s = 3s

=⇒ y = −2se−t + 3s (3)

We we will solve(1) and (3) for s and t in terms of x and y.

x = t =⇒ y = −2se−x + 3s =⇒ y = s(−2e−x + 3) =⇒ s =
y

3− 2e−x

Now, we will substitute these values in z = −2se−t = − 2ye−x

3− 2e−x
=

2y

2− 3ex
.

The solution breaks down at ex =
2

3
that is, the solution breaks down at

x = ln
2

3
.
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(ii) Find the initial strip for z =
1

2
(p2 + q2) + (p − x)(q − y) passing through the

x−axis.

Solution: Solution is passing through the x−axis.
Hence the initial data curve is x = x0(s) = s, y = y0(s) = 0, z = z0(s) = 0.

Initial strip condition is

dz0
ds

= p0
dx0
ds

+ q0
dy0
ds

=⇒ 0 = p0 ∗ 1 + q0 ∗ 0

=⇒ p0 = 0

Substitute x = x0(s) = s, y = y0(s) = 0, z = z0(s) = 0, p0 = 0 in the given
equation.

0 =
1

2
(0 + q20) + (0− s)(q0 − 0)

=⇒ q20
2
− q0 ∗ s = 0

=⇒ q20 − 2q0 ∗ s = 0

=⇒ q0(q0 − 2s) = 0

=⇒ q0 = 0 or q0 = 2s

Therefore there are two initial strips:
Case 1: x = x0(s) = s, y = y0(s) = 0, z = z0(s) = 0, p = p0(s) = 0, q =
q0(s) = 0 and
Case 2: x = x0(s) = s, y = y0(s) = 0, z = z0(s) = 0, p = p0(s) = 0, q =
q0(s) = 2s .

(iii) Find the characteristics differential equations and the characteristic strips of
pq = xy.
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Solution:
We find the characteristic differential equations.

f(x, y, z, p, q) = 0 =⇒ pq − xy = 0

=⇒ f(x, y, z, p, q) = pq − xy
dx

dt
= fp = q

dy

dt
= fq = p

dz

dt
= pfp + qfq = 2pq

dp

dt
= −fx − fz ∗ p = y

dq

dt
= −fy − fz ∗ q = x

We find the characteristic strips. We consider
dx

dt
= q and

dq

dt
= x.

We write as
dx

dt
= 0 ∗ x+ 1 ∗ q and

dq

dt
= 1 ∗ x+ 0 ∗ q.

Auxiliary equation for the system
dx

dt
= a1x+ b1y and

dy

dt
= a2x+ b2y is

m2 − (a1 + b2)m+ a1b2 − a2b1 = m2 − 0.m− 1 = 0.
This means m2 = 1 and hence m = ±1.
If m = 1, x = A1e

t, q = B1e
t.

To find values of A and B.
(a1 −m)A1 + b1B1 = 0 =⇒ (0− 1)A1 + 1 ∗B1 = 0.
That is, A1 = B1. Hence we choose A1 = B1 = 1.
One solution is x = et, q = et.
If m = −1, x = A2e

−t, q = B2e
−t.

To find values of A2 and B2.
(a1 −m)A2 + b1B2 = 0 =⇒ (0 + 1)A2 + 1 ∗B2 = 0.
That is, A2 = −B2. Hence we choose A2 = 1, B2 = −1.
Second independent solution is x = e−t, q = −e−t.
Hence general solution x = Aet +Be−t, q = Aet −Be−t.x = Aet +Be−t, q = Aet −Be−t.x = Aet +Be−t, q = Aet −Be−t.

Similarly, We consider
dy

dt
= p and

dp

dt
= y =⇒ y = Cet +De−t, p = Cet −De−ty = Cet +De−t, p = Cet −De−ty = Cet +De−t, p = Cet −De−t.
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Substituting in
dz

dt
, we get

dz

dt
= 2pq = 2(Cet −De−t)(Aet −Be−t)

= 2(Cet −De−t)(Aet −Be−t)

= 2
(
ACe2t +BDe−2t −BC − AD

)
z = ACe2t −BDe−2t − 2(BC + AD)t+ C

Hence the characteristic strips are

x = Aet +Be−t,

y = Cet +De−t,

p = Cet −De−t,

q = Aet −Be−t,

z = ACe2t −BDe−2t − 2(BC + AD)t+ C

4. (15)Attempt any Three of the following.

(a) Find a partial differential equation satisfied by z = f(x2 + y2).

Solution: Let v = x2 + y2. So
∂v

∂x
= 2x,

∂v

∂y
= 2y.

The partial differential is given by

∂(z, v)

∂(x, y)
= 0

That is, vy p− vx q = 0
Substituting we get, (2y) p− (2x) q = 0. The p.d.e. is y p− x q = 0

(b) Show that (x− a)2 + (y − b)2 + z2 = 1 is a solution of z2(1 + p2 + q2) = 1.

Solution:

(x− a)2 + (y − b)2 + z2 = 1

Differentiation partially with respect to x and y we get
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2(x− a) + 2zzx = 0
=⇒ zzx = −(x− a)
=⇒ zp = −(x− a)
=⇒ z2p2 = (x− a)2

2(y − b) + 2zzy = 0
=⇒ zzy = −(y − b)
=⇒ zq = −(y − b)
=⇒ z2q2 = (y − b)2

z2(1 + p2 + q2) = z2 + z2p2 + z2q2

= z2 + (x− a)2 + (y − b)2

= 1

Hence (x− a)2 + (y − b)2 + z2 = 1 is a solution of (1).

(c) Show that the partial differential equations xp = yq and z(xp + yq) = 2xy are
compatible.

Solution:

• To show that
∂(f, g)

∂(p, q)
6= 0.

∂(f, g)

∂(p, q)
=

∣∣∣∣ fp fq
gp gq

∣∣∣∣
=

∣∣∣∣ x −y
zx zy

∣∣∣∣
= 2xyz 6= 0 on D = {(x, y, z) ∈ R3 : xyz 6= 0}

• To show that
∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)
+
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)
= 0
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∂(f, g)

∂(x, p)
=

∣∣∣∣ fx fp
gx gp

∣∣∣∣
=

∣∣∣∣ p x
zp− 2y zx

∣∣∣∣
= zpx− zpx+ 2xy = 2xy

∂(f, g)

∂(z, p)
=

∣∣∣∣ fz fp
gz gp

∣∣∣∣
=

∣∣∣∣ 0 x
xp+ yq zx

∣∣∣∣
= −x2p− xyq

∂(f, g)

∂(y, q)
=

∣∣∣∣ fy fq
gy gq

∣∣∣∣
=

∣∣∣∣ −q −y
zq − 2x zy

∣∣∣∣
= −2xy

∂(f, g)

∂(z, q)
=

∣∣∣∣ fz fq
gz gq

∣∣∣∣
=

∣∣∣∣ 0 −y
(xp+ yq) zy

∣∣∣∣
= y(xp+ yq)

Hence
∂(f, g)

∂(x, p)
+ p

∂(f, g)

∂(z, p)
+
∂(f, g)

∂(y, q)
+ q

∂(f, g)

∂(z, q)
= 2xy + p ∗ (−x2p− xyq)− 2xy + q ∗ y(xp+ yq)
= −p2x2 + y2q2

= 0 as xp = yq

Hence the two equations are compatible.

(d) Find a complete integral of the partial differential equation z = px+ qy + pq.

Solution: If the given partial differential equation is of the form z = xp+ yq+
h(p, q) then z = ax+ by + h(a, b) is its complete integral.
hence here z = ax+ by + ab.

(e) For the partial differential equation x3 p+ y(3x2 + y) q = z(2x2 + y) and the initial
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data curve x0(s) = 1, y0(s) = s, z0(s) = s2 + s, find the value of

dy0
ds

P
(
x0(s), y0(s), z0(s)

)
− dx0

ds
Q
(
x0(s), y0(s), z0(s)

)
where x3 p+y(3x2 +y) q = z(2x2 +y) is compared with P (x, y, z) p+Q(x, y, z) q =
R(x, y, z).

Solution: Here P = x3, Q = y(3x2 + y), R = z(2x2 + y)
x = x0(s) = 1, y = y0(s) = s, z = z0(s) = s2 + s.
We will show that

dy0
ds

P
(
x0(s), y0(s), z0(s)

)
− dx0

ds
Q
(
x0(s), y0(s), z0(s)

)
6= 0 on I.

dy0
ds

P
(
x0(s), y0(s), z0(s)

)
− dx0

ds
Q
(
x0(s), y0(s), z0(s)

)
= (1)P (1, s, s2 + s)− (0) ∗Q(1, s, s2 + s)

= 1(1)3 = 1 6= 0

(f) Show that the characteristic curves of z p+ q = 0 containing the initial data curve

C : x0(s) = s, y = y0(s) = 0, z0(s) = f(s) where f(s) =


1 if s ≤ 0,

1− s if 0 ≤ s ≤ 1,

0 if s ≥ 1.

are straight lines given by x = y f(s) + s.

Solution: Here P (x, y, z) = z,Q(x, y, z) = 1, R(x, y, z) = 0 and x0(s) =
s, y0(s) = 0, z0(s) = f(s).
We will show that

dy0
ds

P
(
x0(s), y0(s), z0(s)

)
− dx0

ds
Q
(
x0(s), y0(s), z0(s)

)
6= 0 on I.

dy0
ds

P
(
x0(s), y0(s), z0(s)

)
− dx0

ds
Q
(
x0(s), y0(s), z0(s)

)
= (0)P

(
s, 0, f(s)

)
− (1)

(
1
)

= −1 6= 0

Now we will solve the following system


dx

dt
= z

dy

dt
= 1

dz

dt
= 0.
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with initial conditions, x(s, 0) = s, y(s, 0) = 0, z(s, 0) = f(s) at t = 0.
The family of characteristic curves through the initial data curve is

dy

dt
= 1 =⇒ y = t+ c1 =⇒ y(s, o) = 0 + c1 =⇒ c1 = 0

=⇒ y = t (1)

dz

dt
= 0 =⇒ z = c2 =⇒ z(s, o) = c2 =⇒ c2 =


1 if s ≤ 0,

1− s if 0 ≤ s ≤ 1,

0 if s ≥ 1.

=⇒ z =


1 if s ≤ 0,

1− s if 0 ≤ s ≤ 1,

0 if s ≥ 1.

(2)

dx

dt
= z =⇒ dx

dt
=


1 if s ≤ 0,

1− s if 0 ≤ s ≤ 1,

0 if s ≥ 1.

=⇒ x =


t+ c2 if s ≤ 0,

t− st+ c3 if 0 ≤ s ≤ 1,

0 + c4 if s ≥ 1.

=⇒ x(s, 0) = s =


0 + c2 if s ≤ 0,

0 + c3 if 0 ≤ s ≤ 1,

0 + c4 if s ≥ 1.

=⇒ x =


t+ s if s ≤ 0,

t− st+ s if 0 ≤ s ≤ 1,

s if s ≥ 1.

(3)

We will show that x = yf(s) + s.

yf(s) + s =


y(1) + s if s ≤ 0,

y(1− s) + s if 0 ≤ s ≤ 1,

y(0) + s if 1 ≤ s
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Since y = t from (1), we get,

yf(s) + s =


t+ s if s ≤ 0,

t(1− s) + s if 0 ≤ s ≤ 1,

s if 1 ≤ s.

Hence yf(s) + s = x.
Hence the characteristic curves are straight lines intersecting the x− axis at
(s, 0).

xxxxxxxxx
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