- N.B. : (1) All questions are compulsory.
	- (2) Figures to the right indicate marks.
- 1. (a) Attempt any One of the following: (8)
	- (i) Prove that the elimination of arbitrary function ϕ from the equation $\phi(u, v) = 0$, where u and v are functions of x, y and z (z is assumed to be a function of x and y), gives the partial differential equation

$$
\frac{\partial(u,v)}{\partial(y,z)} * p + \frac{\partial(u,v)}{\partial(x,z)} * q = \frac{\partial(u,v)}{\partial(x,y)}.
$$

Solution: Given

$$
\phi(u,v) = 0 \tag{1}
$$

We treat z as a function of x and y. $(x \text{ and } y \text{ as independent variables and})$ z as dependent variable).

So
$$
\frac{\partial y}{\partial x} = 0
$$
 and $\frac{\partial x}{\partial y} = 0$
Let $\frac{\partial z}{\partial x} = p$ and $\frac{\partial z}{\partial y} = q$.

Since ϕ is a function of (u, v) and u, v are functions of x, y and z where z is a function of x and y, differentiating $\phi(u, v) = 0$ partially with respect to x, we get

$$
\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial u} \left[\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial x} \right] + \frac{\partial \phi}{\partial v} \left[\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial v}{\partial z} \frac{\partial z}{\partial x} \right] = 0
$$

$$
0 = \phi_u \left(u_x + 0 + u_z p \right) + \phi_v \left(v_x + 0 + v_z p \right) = 0
$$

$$
\phi_u (u_x + u_z p) = -\phi_v (v_x + v_z p)
$$

$$
\frac{\phi_u}{\phi_v} = -\frac{v_x + v_z p}{u_x + u_z p}
$$
 (2)

Similarly, differentiating 1 with resepct to y , we get

$$
\frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial u} \left[\frac{\partial u}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial y} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial y} \right] + \frac{\partial \phi}{\partial v} \left[\frac{\partial v}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial y} + \frac{\partial v}{\partial z} \frac{\partial z}{\partial y} \right] = 0
$$

$$
0 = \phi_u \left(0 + u_y * 1 + u_z q \right) + \phi_v \left(0 + v_y * 1 + v_z q \right) = 0
$$

$$
\phi_u(u_y + u_z q) = -\phi_v(v_y + v_z q)
$$

$$
\frac{\phi_u}{\phi_v} = -\frac{v_y + v_z q}{u_y + u_z q}
$$
(3)

Taking ratio of (2) and (3),

$$
-\frac{v_x + v_z p}{u_x + u_z p} = -\frac{v_y + v_z q}{u_y + u_z q}
$$

 ϕ_{v}

This implies

$$
(v_x + v_z p)(u_y + u_z q) = (v_y + v_z q)(u_x + u_z p)
$$

\n
$$
(u_y v_z - v_y u_z)p + (u_z v_x - u_x v_z)q + u_z v_z p q = u_x v_y - u_y v_x + u_z v_z q p
$$

\n
$$
(u_y v_z - v_y u_z)p + (u_z v_x - u_x v_z)q = u_x v_y - u_y v_x
$$

\n
$$
\det \begin{pmatrix} u_y & u_z \\ v_y & v_z \end{pmatrix} p + \det \begin{pmatrix} u_z & u_x \\ v_z & v_x \end{pmatrix} q = \det \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}
$$

\n
$$
\frac{\partial(u, v)}{\partial(y, z)} * p + \frac{\partial(u, v)}{\partial(z, x)} * q = \frac{\partial(u, v)}{\partial(x, y)}
$$

\n(4)

(ii) If $z = F(x, y; a)$ is a one-parameter family of solutions of the partial differential equation $f(x, y, z, p, q) = 0$ where $p = z_x = F_x, q = z_y = F_y$, prove that the envelope of this family, if it exists, is also a solution of $f(x, y, z, p, q) = 0$.

Solution: (Note: This is Lemma 1.3.1 from our syllabus.) $z = F(x, y; a)$ is a one-parameter family of solutions of $f(x, y, z, p, q) = 0$. The envelope E of this family is obtained by eliminating a between

$$
z = F(x, y; a),\tag{5}
$$

$$
0 = F_a(x, y; a). \tag{6}
$$

The equation of E is found by solving $F_a(x, y, a) = 0$ for a as a function of x and $y, a = a(x, y)$ and then substituting into $z = f(x, y; a)$.

Hence the envelope E will be of the form $z = G(x, y) = F(x, y, a(x, y))$. We want to show that $z = F(x, y, a(x, y))$ is a solution of $f(x, y, z, p, q) = 0$. It is sufficient to show that $p = G_x, q = G_y$. Now, $G(x, y) = F(x, y, a(x, y)) \implies G_x = F_x + F_a * a_x = F_x + 0 * a_x = F_x = p$ and $G_y = F_y + F_a * a_y = F_x + 0 * a_y = F_y = q$ (as $F_a = 0, F_b = 0$). Hence $z = G(x, y)$ is also a solution of $f(x, y, z, p, q) = 0$

- (b) Attempt any Two of the following. (12)
	- (i) Find a partial differential equation satisfied by $z = f\left(\frac{y}{x}\right)$ \boldsymbol{x}) where f is real valued function on $\mathbb{R} \times \mathbb{R}$.

Solution: Let $v =$ \hat{y} \boldsymbol{x} . So $\frac{\partial v}{\partial x} = -\frac{y}{x^2}$ $rac{9}{x^2}$ ∂v $rac{\partial}{\partial y} =$ 1 \boldsymbol{x} . The partial differential is given by $\partial(z,v)$ $\partial(x,y)$ $= 0$ That is, $v_y p - v_x q = 0$ Substituting we get, $\frac{1}{1}$ \overline{x} $p - \left(-\frac{y}{q}\right)$ $\left(\frac{y}{x^2} q\right) = 0$. The p.d.e. is $x p + y q = 0$.

(ii) Find the singular integral of $f(x, y, z, p, q) = z - px - qy - p^2 - q^2 = 0$ using the three equations : $f(x, y, z, p, q) = 0, f_p(x, y, z, p, q) = 0, f_q(x, y, z, p, q) = 0.$

Solution: We know that singular integral satisfies $f(x, y, z, p, q) = 0,$ $f_p(x, y, z, p, q) = 0,$ $f_q(x, y, z, p, q) = 0.$ \mathcal{L} \mathcal{L} \int $z - px - qy - p^2 - q^2 = 0,$ $-x - 2p = 0,$ $-y-2q = 0.$ \mathcal{L} \mathcal{L} \int This implies $p = -\frac{x}{2}$ 2 $, q = -\frac{y}{2}$ 2 .

Hence the singular solution is

$$
z - px - qy - p2 - q2 = 0
$$

\n
$$
\implies z - x \frac{-x}{2} - y \frac{-y}{2} - \frac{x^{2}}{4} - \frac{y^{2}}{4} = 0
$$

\n
$$
\implies z + \frac{x^{2}}{4} + \frac{y^{2}}{4} = 0
$$

\n
$$
\implies 4z = -(x + y)^{2}
$$

(iii) Solve the Lagrange's partial differential equation tan x $p + \tan y q = \tan z$.

Solution:
$$
\tan x \, p + \tan y \, q = \tan z
$$

\nLagrange's auxiliary eqns are
\n
$$
\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}.
$$
\n
$$
\frac{dx}{\tan x} = \frac{dy}{\tan y} = \frac{dz}{\tan z}
$$
\n(1).
\nTaking the first two fractions, we get
\n
$$
\frac{dx}{\tan x} = \frac{dy}{\tan y}.
$$
\n
$$
\frac{\sin x}{\sin y} = c_1
$$
\n(2)
\nTaking the first and the last from (1).
\n
$$
\frac{dx}{\tan x} = \frac{dz}{\tan x}.
$$
\n
$$
\frac{\sin x}{\sin z} = c_2
$$
\n(3)
\nFrom (2) and (3), the required general solution is
\n
$$
\phi \left(\frac{\sin x}{\sin y}, \frac{\sin x}{\sin z} \right) = 0
$$
\nAnother form of the general integral is
\n
$$
\frac{\sin x}{\sin z} = \phi \left(\frac{\sin x}{\sin y} \right)
$$

2. (a) Attempt any One of the following: (8)

(i) (I) If $p = \phi(x, y, z)$ and $q = \psi(x, y, z)$ are obtained by solving $f(x, y, z, p, q) = 0, g(x, y, z, p, q) = 0$ for p and q then state the necessary and sufficient condition for the equation $dz = \phi(x, y, z) dx + \psi(x, y, z) dy$

to be integrable.

(II) Show that the first order partial differential equations $p = M(x, y)$ and $q = N(x, y)$ are compatible if and only if $\frac{\partial M}{\partial y}$ $\frac{\partial w}{\partial y} =$ ∂N $\frac{\partial}{\partial x}$.

Solution: $[f, g] = \frac{\partial (f, g)}{\partial (g)}$ $\partial(x,p)$ + $\partial(f,g)$ $\partial(z,p)$ \overline{p} + $\partial(f,g)$ $\partial(y,q)$ + $\partial(f,g)$ $\partial(z,q)$ $q=0.$ $p = M(x, y)$ and $q = N(x, y)$ We write these equations in the form $f = 0$ and $g = 0$. Therefore the two equations are $f = p - M(x, y) = 0$ and $g = q - N(x, y) =$ 0. First we will show that $\frac{\partial (f,g)}{\partial (g)}$ $\partial(x,p)$ $+p$ $\partial(f,g)$ $\partial(z,p)$ $+$ $\partial(f,g)$ $\partial(y,q)$ $+ q$ $\partial(f,g)$ $\frac{\partial (y, y)}{\partial (z, q)} = N_x - M_y$ $\partial(f,g)$ $\partial(x,p)$ = $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ f_x f_p g_x g_p = $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ M_x 1 $-N_x$ 0 $=N_x$ $\partial(f,g)$ $\partial(z,p)$ = $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ f_z f_p g_z g_p $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ = 0 1 0 0 $= 0$ $\partial(f,g)$ $\partial(y,q)$ = f_y f_q g_y g_q = $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $-M_y$ 0 $-N_y$ 1 $=-My$ $\partial(f,g)$ $\partial(z,q)$ = $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ f_z f_q g_z g_q = $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 0 0 0 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $= 0$ Hence $\frac{\partial (f,g)}{\partial (g)}$ $\partial(x,p)$ $+ p$ $\partial(f,g)$ $\partial(z,p)$ + $\partial(f,g)$ $\partial(y,q)$ $+ q$ $\partial(f,g)$ $\frac{\partial (y, y)}{\partial (z, q)} = N_x + p * 0 - M_y + q * 0 =$

 $N_x - M_y$ (*) Now, Suppose the first order partial differential equations $p = M(x, y)$ and $q = {\cal N}(x,y)$ are compatible. Therefore $f = p - M(x, y) = 0$ and $g = q - N(x, y) = 0$ are compatible. Hence $\frac{\partial (f,g)}{\partial (g)}$ $\partial(x,p)$ $+ p$ $\partial(f,g)$ $\partial(z,p)$ + $\partial(f,g)$ $\partial(y,q)$ $+ q$ $\partial(f,g)$ $\partial(z,q)$ $= 0$ Hence $N_x - M_y = 0$. Thus $N_x = M_y$. That is, Hence $\frac{\partial M}{\partial y} =$ ∂N $\frac{\partial}{\partial x}$. Conversely, suppose $\frac{\partial M}{\partial \rho}$ $\frac{\partial u}{\partial y} =$ ∂N $\frac{\partial}{\partial x}$. To show that $f = p - \tilde{M}(x, y) = 0$ and $g = q - N(x, y) = 0$ are compatible. • To show that $\frac{\partial(f,g)}{\partial(p,q)}$ $\neq 0.$ $\partial(f,g)$ $\partial(p,q)$ = $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ f_p f_q g_p g_q = 1 0 0 1 $= 1 \neq 0$ on any domain D. • To show that $\frac{\partial(f,g)}{\partial(x,p)}$ $+ p$ $\partial(f,g)$ $\partial(z,p)$ $+$ $\partial(f,g)$ $\partial(y,q)$ $+ q$ $\partial(f,g)$ $\partial(z,q)$ $= 0$ $\partial(f,g)$ $\partial(x,p)$ $+ p$ $\partial(f,g)$ $\partial(z,p)$ + $\partial(f,g)$ $\partial(y,q)$ $+ q$ $\partial(f,g)$ $\frac{\partial (y, y)}{\partial (z, q)} = N_x - M_y$ from * ∂N $\frac{\partial}{\partial x} =$ ∂M ∂y $= 0$ Hence $f = 0$ and $g = 0$ are compatible.

(ii) State Charpit's Auxiliary equations and explain the Charpit's method to find a complete integral of a given partial differential equation $f(x, y, z, p, q) = 0$.

Solution: dx f_p = dy f_q = dz $pf_p + qf_q$ $=-\frac{dp}{dx}$ $f_x + pf_z$ $=-\frac{dq}{f}$ $f_y + qf_z$ = dz $pf_p + qf_q$ = dg 0 (7) Since any of the integrals of 7 will satisfy ??, we will find an integral of

7 which involves p or q or both. Thus we will get the required equation $g(x, y, z, p, q) = 0$

The equation 7 is called Charpit's Auxiliary equations. Note that we want the functions $p = \phi$ and $q = \psi$. We can find $p = \phi$ (or $q = \psi$) from the Charpit's Auxiliary equations and then substitute the value of $p = \phi$ (or $q = \psi$) in $f = 0$ to get $q = \psi$ (or $p = \phi$). Working Rules while using Charpit's Method

STEP 1 Write the given partial differential equation in the form $f = 0$.

STEP 2 Find all the values required in Charpit's Auxiliary equation.

- STEP 3 Write the Charpits' Auxiliary equation using the above values.
- STEP 4 Select two proper fractions so that we can easily find the integral $q = 0$ involving at least one of p and q.
- **STEP 5** Solve the equations $f = 0$ and $g = 0$ for p and q and get the functions $p = \phi$ and $q = \psi$.

STEP 6 Write the Pfaffian differential equation $dz = \phi dx + \psi dy$.

STEP 7 Integral of this equation is our required complete integral of $f =$ 0.

- (b) Attempt any Two of the following. (12)
	- (i) Solve the compatible partial differential equations $xp yq = x$ and $x^2p + q = xz$ and find a common solution.

Solution:

STEP 1 Solve the two equations for p and q . Here $xp = x + yq$ substitue in $x^2p + q = xz \implies x(x + yq) + q = xz \implies$ $x^2 + xyq + q = xz$. This means $q(xy+1) = x(z-x)$. So, $q = \frac{x(z-x)}{x-1}$ $xy + 1$. This implies $xp = x +$ $xy(z-x)$ $xy + 1$ $\Longrightarrow p = 1 +$ $y(z-x)$ $xy + 1$ $\implies p = \frac{1 + zy}{1 + zy}$ $1 + xy$ **STEP 2** Construct the Pfaffian differential equation $dz = \phi dx + \psi dy$. That is, $dz =$ $1 + zy$ $1 + xy$ $dx +$ $x(z-x)$ $1 + xy$ $dy \implies z dz = d(xy) \implies z^2 =$ $2xy + c$

$$
(1+xy) dz = (1+zy) dx + x(z-x) dy
$$

\n
$$
(1+xy) dz = dx + zy dx + xz dy - x2 dy
$$

\n
$$
(1+xy) dz = z(y dx + z dy) = dx - x2 dy
$$

\n
$$
\frac{(1+xy) dz - z(y dx + z dy)}{(1+xy)^2} = \frac{dx - x2 dy}{(1+xy)^2}
$$

\n
$$
d\left(\frac{z}{(1+xy)}\right) = \frac{\frac{1}{x2} dx - dy}{(\frac{1}{x}+y)2}
$$

\n
$$
d\left(\frac{z}{(1+xy)}\right) = -\frac{\frac{1}{x2} dx + dy}{(\frac{1}{x}+y)2}
$$

\n
$$
d\left(\frac{z}{(1+xy)}\right) = d\left(\frac{1}{\frac{1}{x}+y}\right)
$$

\nOn integrating, we get,
\n
$$
\frac{z}{(1+xy)} = \frac{1}{\frac{1}{x}+y} + c.
$$

\n**STEP 3**
$$
\frac{z}{(1+xy)} = \frac{x}{1+xy} + c
$$
 is the required solution.

(ii) Show that $dz = \phi(x, y, z) dx + \psi(x, y, z) dy$ is integrable if and only if

$$
-\phi \psi_z + \psi \phi_z - \psi_x + \phi_y = 0.
$$

Solution: where $\overline{\mathbf{X}} = (\phi(x, y, z), \psi(x, y, z), -1)$. curl $X = det$ $\int \hat{i} \quad \hat{j} \quad \hat{k}$ $\begin{array}{|c|c|} \hline \quad \quad & \quad \quad & \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad & \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad & \quad \quad \\ \hline \end{array}$ ∂ ∂x ∂ ∂y ∂ ∂z P Q R \setminus $\begin{array}{c} \hline \end{array}$ $=\det$ $\int \hat{i} \quad \hat{j} \quad \hat{k}$ ∂ ∂x ∂ ∂y ∂ ∂z ϕ ψ -1 \setminus $\begin{array}{c} \hline \end{array}$ $=\Big(\frac{\partial}{\partial y}\,\left(-1\right)-\frac{\partial}{\partial z}$ $\frac{\partial}{\partial z} \psi$ **jî** – $\left(\frac{\partial}{\partial x} (-1) - \frac{\partial}{\partial y}\right)$ $\frac{\partial}{\partial z} \phi$ **)** $\hat{\mathbf{j}} + \left(\frac{\partial}{\partial x} \psi - \frac{\partial}{\partial y} \psi \right)$ $\frac{\partial}{\partial y}\left.\phi\right)$ ƙ $=-\psi_z\;\mathbf{\hat{i}}+\phi_z\;\mathbf{\hat{j}}+(\psi_x-\phi_y)\;\mathbf{\hat{k}}$ $= (-\psi_z, \phi_z, \psi_x - \phi_y)$ $\overline{\mathbf{X}} \cdot \text{curl } \overline{\mathbf{X}} = (\phi, \psi, -1) \cdot (-\psi_z, \phi_z, \psi_x - \phi_y)$ $= -\phi \psi_z + \psi \phi_z - \psi_x + \phi_y$ Hence $dz = \phi(x, y, z) dx + \psi(x, y, z) dy$ is integrable if and only if $-\phi \psi_z +$ $\psi \phi_z - \psi_x + \phi_y = 0.$

(iii) Find a complete integral of $x^2p^2 + y^2q^2 - 4 = 0$.

Solution: We find all the values required in Charpit's Auxiliary equation. Charpit's Auxiliary equations are

$$
\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{(p \ f_p + q \ f_q)} = -\frac{dp}{(f_x + pf_z)} = -\frac{dq}{(f_y + qf_z)}
$$

$$
\frac{dx}{2x^2p} = \frac{dy}{2y^2q} = \frac{dz}{2(x^2p^2 + y^2q^2)} = -\frac{dp}{2xp^2} = -\frac{dq}{2yq^2}
$$

Consider first and fourth ratio.

$$
\frac{dx}{2x^2p} = -\frac{dp}{2xp^2}
$$

$$
\frac{dx}{x} = -\frac{dp}{p}
$$

Integrating both sides, we get, $\ln x = -\ln p + \ln a$. This means $xp = a$. That is, $p =$ a \overline{x} .

Substituting this in $f = x^2p^2 + y^2q^2 - 4 = 0$, we get, $x^2 \frac{a^2}{a}$ $\frac{a}{x^2} + y^2 q^2 - 4 = 0.$ $x^2\frac{a^2}{2}$ $\frac{u}{x^2} + y^2 q^2 - 4 = 0$ $a^2 + y^2 q^2 = 4$ $q =$ √ $4 - a^2$ \hat{y}

Consider the Pfaffian differential equation $dz = p dx + q dy$.

$$
dz = \frac{a}{x} dx + \frac{\sqrt{4 - a^2}}{y} dy
$$

$$
\implies z = a \ln x + \sqrt{4 - a^2} \ln y + b
$$

 $z = F(x, y; a, b) = a \ln x + b$ √ $4 - a^2 \ln y + b$ is a complete integral of $f =$ $x^2p^2 + y^2q^2 - 4 = 0$ Note: If we consider second and fourth ratio, that is, $\frac{dy}{dx}$ $2y^2q$ $=-\frac{dq}{\Omega}$ $\frac{dq}{2yq^2}$ then we get $z = c \ln y + \sqrt{4 - c^2 \ln x + d}$ as a complete integral. √

So, $z = a \ln x +$ √ $4-a^2 \ln y + b$ and $z = c \ln y +$ √ $4 - c^2 \ln x + d$ are complete integrals of $f = x^2p^2 + y^2q^2 - 4 = 0$.

- 3. (a) Attempt any One of the following. (8)
	- (i) Consider the quasi-linear equation $P(x, y, z)$ $p+Q(x, y, z)$ $q = R(x, y, z)$ where P, Q and R are continuously differentiable functions on a domain $\Omega \subseteq \mathbb{R}^3$. If $S: z = u(x, y)$ is the surface obtained by taking the union of characteristic curves of the given p.d.e. where $u(x, y)$ is a continuously differentiable function then prove that S is the integral surface of the p.d.e.

Solution: We want to show that S is an integral surface. Let $A(x_0, y_0, u(x_0, y_0))$ be any point on S. We want to show that A satisfies the PDE $P(x, y, z)$ $p + Q(x, y, z)$ $q =$ $R(x, y, z)$. This means we want to show that $P(x_0, y_0, u(x_0, y_0)) u_x(x_0, y_0) + Q(x_0, y_0, u(x_0, y_0)) u_y(x_0, y_0) = R(x_0, y_0, u(x_0, y_0)).$ Since S is a union of characteristic curves, there is a characteristic curve γ_A passing through A that lies on S (curve is lying on S). Since normal to S at A is in the direction $(u_x(x_0, y_0), u_y(x_0, y_0), -1)$ and the tangent to the curve γ_A at A is in the direction $\Big(P(x_0,y_0,u(x_0,y_0)),Q(x_0,y_0,u(x_0,y_0)),R(x_0,u(x_0,y_0))\Big)$ the dot product of the two is 0. Hence $\sqrt{ }$ \setminus $\sqrt{ }$ = 0.

$$
\left(u_x(x_0,y_0), u_y(x_0,y_0), -1\right) \cdot \left(P(x_0,y_0, u(x_0,y_0)), Q(x_0,y_0, u(x_0,y_0)), R(x_0,y_0, u(x_0,y_0))\right)
$$

Thus

 $P(x_0, y_0, u(x_0, y_0))u_x(x_0, y_0) + Q(x_0, y_0, u(x_0, y_0))u_y(x_0, y_0) + R(x_0, y_0, u(x_0, y_0))(-1) = 0.$

Hence $A(x_0, y_0, u(x_0, y_0))$ satisfies the PDE $P(x, y, z)$ $p + Q(x, y, z)$ $q = R$ where $p = z_x = u_x, q = z_y = u_y$.

(ii) Write a short note on the characteristic strip and characteristic curve for a non linear first order partial differential equation $f(x, y, z, p, q) = 0$.

Solution: The characteristic differential equations related to the p.d.e. $f(x, y, z, p, q) = 0$ are dx $\frac{dx}{dt} = f_p,$ dy $\frac{dy}{dt} = f_q,$ dz $\frac{d\omega}{dt}$ = $pf_p + qf_q$, $\frac{dp}{dt} = -f_x - f_z * p,$ $\frac{dq}{dt} = -f_y - f_z * q,$ \mathcal{L} $\overline{}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array}$ 12 of 22

A solution $(x(t), y(t), z(t), p(t), q(t))$ of the above system of ordinary differential equations can be interpreted as a strip. The first three functions $(x(t), y(t), z(t))$ determine a space curve. At each point of this space curve, $p(t)$ and $q(t)$ define a tangent plane with $(p, q, -1)$ as the normal vector. The curve along with these tangent planes at each point is called a characteristic strip and the curve is called the characteristic curve.

Figure 1: Characteristic strip

Any set of five functions $x(t)$, $y(t)$, $z(t)$, $p(t)$ and $q(t)$ of the above system can be interpreted as a strip only if the following condition called the strip condition

$$
\frac{dz}{dt} = p(t)\frac{dx}{dt} + q(t)\frac{dy}{dt}
$$
\n(8)

is satisfied.

- (b) Attempt any Two of the following. (12)
	- (i) Find the solution of the initial value problem for the quasi-linear equation $p - z q = -z$ for all y and $x > 0$ with the initial data curve $C: x_0(s) = 0, y_0(s) = s, z_0(s) = -2s, -\infty < s < \infty.$

Solution: Here $P(x, y, z) = 1, Q(x, y, z) = -z, R(x, y, z) = -z$ and $x_0(s) = 0, y_0(s) = s, z_0(s) = -2s.$ We will show that dy_0 $\frac{dy_0}{ds} P(x_0(s), y_0(s), z_0(s)) - \frac{dx_0}{ds}$ $\frac{dx_0}{ds}Q(x_0(s), y_0(s), z_0(s)) \neq 0$ on $(-\infty, \infty)$.

$$
\frac{dy_0}{ds} P(x_0(s), y_0(s), z_0(s)) - \frac{dx_0}{ds} Q(x_0(s), y_0(s), z_0(s)) = (1)(1) - (0)(2s)
$$

= 1 \neq 0 \text{ for } -\infty < s < \infty.

 $\sqrt{ }$

 dx

Now we will solve the following system \int $\overline{\mathcal{L}}$ $\frac{du}{dt} = 1$ $\frac{dy}{dt} = -z$ $\frac{dz}{dt} = -z.$

with initial conditions, $x(s, 0) = 0, y(s, 0) = s, z(s, 0) = -2s$ at $t = 0$. The family of characteristic curves through the initial data curve is

$$
\frac{dx}{dt} = 1 \Longrightarrow x = t + c_1 \Longrightarrow x(s, o) = 0 + c_1 \Longrightarrow c_1 = 0
$$

 $\implies x = t$ (1)

 $\frac{dz}{dt} = -z \Longrightarrow \ln z = -t + \ln c_2 \Longrightarrow e^{-t} = \frac{z}{c_2}$ $\overline{c_2}$ $\implies e^0 = \frac{-2s}{\cdots}$ $\overline{c_2}$ $\implies c_2 = -2s$

$$
\implies z = -2se^{-t} \tag{2}
$$

 $\frac{dy}{dt} = -z \Longrightarrow \frac{dy}{dt} = 2se^{-t} \Longrightarrow y = -2se^{-t} + c_3 \Longrightarrow y(s, o) = -2s + c_3 \Longrightarrow c_3 = s + 2s = 3$

$$
\implies y = -2se^{-t} + 3s \tag{3}
$$

We we will solve(1) and (3) for s and t in terms of x and y .

$$
x = t \Longrightarrow y = -2se^{-x} + 3s \Longrightarrow y = s(-2e^{-x} + 3) \Longrightarrow s = \frac{y}{3 - 2e^{-x}}
$$

Now, we will substitute these values in $z = -2se^{-t} = 2ye^{-x}$ $\frac{2g}{3-2e^{-x}} =$ $2y$ $\frac{2g}{2-3e^x}$ The solution breaks down at $e^x = \frac{2}{3}$ 3 that is, the solution breaks down at $x = \ln \frac{2}{5}$ 3 .

(ii) Find the initial strip for $z =$ 1 2 $(p^2+q^2)+(p-x)(q-y)$ passing through the x – axis.

Solution: Solution is passing through the x −axis. Hence the initial data curve is $x = x_0(s) = s, y = y_0(s) = 0, z = z_0(s) = 0.$

Initial strip condition is

$$
\frac{dz_0}{ds} = p_0 \frac{dx_0}{ds} + q_0 \frac{dy_0}{ds}
$$

$$
\implies 0 = p_0 \cdot 1 + q_0 \cdot 0
$$

$$
\Longrightarrow p_0 = 0
$$

Substitute $x = x_0(s) = s, y = y_0(s) = 0, z = z_0(s) = 0, p_0 = 0$ in the given equation.

$$
0 = \frac{1}{2}(0 + q_0^2) + (0 - s)(q_0 - 0)
$$

\n
$$
\implies \frac{q_0^2}{2} - q_0 * s = 0
$$

\n
$$
\implies q_0^2 - 2q_0 * s = 0
$$

\n
$$
\implies q_0(q_0 - 2s) = 0
$$

\n
$$
\implies q_0 = 0 \text{ or } q_0 = 2s
$$

\nTherefore there are two initial strips:
\nCase 1: $x = x_0(s) = s, y = y_0(s) = 0, z = z_0(s) = 0, p = p_0(s) = 0, q = 0$

 $q_0(s) = 0$ and Case 2: $x = x_0(s) = s, y = y_0(s) = 0, z = z_0(s) = 0, p = p_0(s) = 0, q = z_0$ $q_0(s) = 2s$.

(iii) Find the characteristics differential equations and the characteristic strips of $pq = xy$.

Solution:

We find the characteristic differential equations.

$$
f(x, y, z, p, q) = 0 \implies pq - xy = 0
$$

\n
$$
\implies f(x, y, z, p, q) = pq - xy
$$

\n
$$
\frac{dx}{dt} = f_p = q
$$

\n
$$
\frac{dy}{dt} = f_q = p
$$

\n
$$
\frac{dz}{dt} = p f_p + q f_q = 2pq
$$

\n
$$
\frac{dp}{dt} = -f_x - f_z * p = y
$$

\n
$$
\frac{dq}{dt} = -f_y - f_z * q = x
$$

\nWe find the characteristic strips. We consider $\frac{dx}{dt} = q$ and $\frac{dq}{dt} = x$.
\nWe write as $\frac{dx}{dt} = 0 * x + 1 * q$ and $\frac{dq}{dt} = 1 * x + 0 * q$.
\nAuxiliary equation for the system $\frac{dx}{dt} = a_1 x + b_1 y$ and $\frac{dy}{dt} = a_2 x + b_2 y$ is
\n $m^2 - (a_1 + b_2)m + a_1b_2 - a_2b_1 = m^2 - 0.m - 1 = 0$.
\nThis means $m^2 = 1$ and hence $m = \pm 1$.
\nIf $m = 1, x = A_1e^t, q = B_1e^t$.
\nTo find values of A and B.
\n $(a_1 - m) A_1 + b_1 B_1 = 0 \implies (0 - 1) A_1 + 1 * B_1 = 0$.
\nCheck 1B and 2.
\nThat is, $A_1 = B_1$. Hence we choose $A_1 = B_1 = 1$.
\nOne solution is $x = e^t, q = e^t$.
\nIf $m = -1, x = A_2e^{-t}, q = B_2e^{-t}$.
\nTo find values of A_2 and B_2 .
\n $(a_1 - m) A_2 + b_1 B_3 = 0 \implies (0 + 1) A_2 + 1 * B_2 = 0$.
\nThat is, $A_2 = -B_2$. Hence we choose $A_2 = 1, B_2 = -1$.
\nSecond independent solution is $x = e^{-t}, q = Ae^t - Be^{-t}$.

Substituting in $\frac{dz}{dt}$ $\frac{d}{dt}$, we get

$$
\frac{dz}{dt} = 2pq = 2(Ce^t - De^{-t})(Ae^t - Be^{-t})
$$

$$
= 2(Ce^t - De^{-t})(Ae^t - Be^{-t})
$$

$$
= 2(ACe^{2t} + BDe^{-2t} - BC - AD)
$$

$$
z = ACe^{2t} - BDe^{-2t} - 2(BC + AD)t + C
$$

Hence the characteristic strips are

$$
x = Aet + Be-t,
$$

\n
$$
y = Cet + De-t,
$$

\n
$$
p = Cet - De-t,
$$

\n
$$
q = Aet - Be-t,
$$

\n
$$
z = ACe2t - BDe-2t - 2(BC + AD)t + C
$$

4. Attempt any Three of the following. (15)

(a) Find a partial differential equation satisfied by $z = f(x^2 + y^2)$.

Solution: Let $v = x^2 + y^2$. So $\frac{\partial v}{\partial x}$ $\frac{\partial}{\partial x} = 2x,$ ∂v $\frac{\partial}{\partial y} = 2y.$ The partial differential is given by $\partial(z,v)$ $= 0$

That is, $v_y p - v_x q = 0$ Substituting we get, (2y) $p - (2x)$ $q = 0$. The p.d.e. is $y p - x q = 0$

 $\partial(x,y)$

(b) Show that $(x-a)^2 + (y-b)^2 + z^2 = 1$ is a solution of $z^2(1+p^2+q^2) = 1$.

Solution:

$$
(x-a)^2 + (y-b)^2 + z^2 = 1
$$

Differentiation partially with respect to x and y we get

$$
2(x-a) + 2zz_x = 0
$$

\n
$$
\implies zz_x = -(x-a)
$$

\n
$$
\implies zp = -(x-a)
$$

\n
$$
\implies z^2p^2 = (x-a)^2
$$

\n
$$
\implies z^2(1+p^2+q^2) = z^2 + z^2p^2 + z^2q^2
$$

\n
$$
= z^2 + (x-a)^2 + (y-b)^2
$$

\n
$$
= 1
$$

\nHence $(x-a)^2 + (y-b)^2 + z^2 = 1$ is a solution of (1).

(c) Show that the partial differential equations $xp = yq$ and $z(xp + yq) = 2xy$ are compatible.

Solution:

\n- To show that
$$
\frac{\partial(f,g)}{\partial(p,q)} \neq 0.
$$
\n- \n
$$
\frac{\partial(f,g)}{\partial(p,q)} = \begin{vmatrix} f_p & f_q \\ g_p & g_q \end{vmatrix}
$$
\n
$$
= \begin{vmatrix} x & -y \\ zx & zy \end{vmatrix}
$$
\n
$$
= 2xyz \neq 0 \text{ on } D = \{(x,y,z) \in \mathbb{R}^3 : xyz \neq 0\}
$$
\n
\n- To show that $\frac{\partial(f,g)}{\partial(x,p)} + p \frac{\partial(f,g)}{\partial(z,p)} + \frac{\partial(f,g)}{\partial(y,q)} + q \frac{\partial(f,g)}{\partial(z,q)} = 0$ \n
\n

$$
\frac{\partial(f,g)}{\partial(x,p)} = \begin{vmatrix} f_x & f_p \\ g_x & g_p \end{vmatrix}
$$

\n
$$
= \begin{vmatrix} p & x \\ xp - 2y & zx \end{vmatrix}
$$

\n
$$
= zpx - zpx + 2xy = 2xy
$$

\n
$$
\frac{\partial(f,g)}{\partial(z,p)} = \begin{vmatrix} f_z & f_p \\ g_z & g_p \end{vmatrix}
$$

\n
$$
= \begin{vmatrix} 0 & x \\ xp + yq & zx \end{vmatrix}
$$

\n
$$
= -x^2p - xyq
$$

\n
$$
\frac{\partial(f,g)}{\partial(y,q)} = \begin{vmatrix} f_y & f_q \\ g_y & g_q \end{vmatrix}
$$

\n
$$
= \begin{vmatrix} -q & -y \\ zq - 2x & zy \end{vmatrix}
$$

\n
$$
= -2xy
$$

\n
$$
\frac{\partial(f,g)}{\partial(z,q)} = \begin{vmatrix} f_z & f_q \\ g_z & g_q \end{vmatrix}
$$

\n
$$
= \begin{vmatrix} 0 & -y \\ (xp + yq) & zy \end{vmatrix}
$$

\n
$$
= y(xp + yq)
$$

\nHence $\frac{\partial(f,g)}{\partial(x,p)} + p \frac{\partial(f,g)}{\partial(z,p)} + \frac{\partial(f,g)}{\partial(y,q)} + q \frac{\partial(f,g)}{\partial(z,q)}$
\n
$$
= 2xy + p * (-x^2p - xyq) - 2xy + q * y(xp + yq)
$$

\n
$$
= -p^2x^2 + y^2q^2
$$

\n
$$
= 0 \text{ as } xp = yq
$$

Hence the two equations are compatible.

(d) Find a complete integral of the partial differential equation $z = px + qy + pq$.

Solution: If the given partial differential equation is of the form $z = xp + yq +$ $h(p, q)$ then $z = ax + by + h(a, b)$ is its complete integral. hence here $z = ax + by + ab$.

(e) For the partial differential equation x^3 $p + y(3x^2 + y)$ $q = z(2x^2 + y)$ and the initial

data curve $x_0(s) = 1, y_0(s) = s, z_0(s) = s^2 + s$, find the value of

$$
\frac{dy_0}{ds}P(x_0(s), y_0(s), z_0(s)) - \frac{dx_0}{ds}Q(x_0(s), y_0(s), z_0(s))
$$

where $x^3 p + y(3x^2 + y) q = z(2x^2 + y)$ is compared with $P(x, y, z) p + Q(x, y, z) q = R(x, y, z)$.

Solution: Here
$$
P = x^3
$$
, $Q = y(3x^2 + y)$, $R = z(2x^2 + y)$
\n $x = x_0(s) = 1$, $y = y_0(s) = s$, $z = z_0(s) = s^2 + s$.
\nWe will show that
\n
$$
\frac{dy_0}{ds} P(x_0(s), y_0(s), z_0(s)) - \frac{dx_0}{ds} Q(x_0(s), y_0(s), z_0(s)) \neq 0 \text{ on } I.
$$
\n
$$
\frac{dy_0}{ds} P(x_0(s), y_0(s), z_0(s)) - \frac{dx_0}{ds} Q(x_0(s), y_0(s), z_0(s)) = (1)P(1, s, s^2 + s) - (0) * Q(1, s, s^2 + s)
$$
\n
$$
= 1(1)^3 = 1 \neq 0
$$

(f) Show that the characteristic curves of $z p + q = 0$ containing the initial data curve $C: x_0(s) = s, y = y_0(s) = 0, z_0(s) = f(s)$ where $f(s) =$ $\sqrt{ }$ \int \mathcal{L} 1 if $s \leq 0$, $1-s$ if $0 \leq s \leq 1$, 0 if $s \geq 1$.

are straight lines given by $x = y f(s) + s$.

Solution: Here
$$
P(x, y, z) = z
$$
, $Q(x, y, z) = 1$, $R(x, y, z) = 0$ and $x_0(s) = s$, $y_0(s) = 0$, $z_0(s) = f(s)$.
\nWe will show that\n
$$
\frac{dy_0}{ds} P(x_0(s), y_0(s), z_0(s)) - \frac{dx_0}{ds} Q(x_0(s), y_0(s), z_0(s)) \neq 0
$$
 on *I*.\n
$$
\frac{dy_0}{ds} P(x_0(s), y_0(s), z_0(s)) - \frac{dx_0}{ds} Q(x_0(s), y_0(s), z_0(s)) = (0)P(s, 0, f(s)) - (1)(1)
$$
\n
$$
= -1 \neq 0
$$
\nNow we will solve the following system\n
$$
\begin{cases}\n\frac{dx}{dt} = z \\
\frac{dy}{dt} = 1 \\
\frac{dz}{dt} = 0.\n\end{cases}
$$

with initial conditions, $x(s, 0) = s, y(s, 0) = 0, z(s, 0) = f(s)$ at $t = 0$. The family of characteristic curves through the initial data curve is

$$
\frac{dy}{dt} = 1 \Longrightarrow y = t + c_1 \Longrightarrow y(s, o) = 0 + c_1 \Longrightarrow c_1 = 0
$$

$$
\Longrightarrow y = t \tag{1}
$$

$$
\frac{dz}{dt} = 0 \Longrightarrow z = c_2 \Longrightarrow z(s, o) = c_2 \Longrightarrow c_2 = \begin{cases} 1 & \text{if } s \leq 0, \\ 1 - s & \text{if } 0 \leq s \leq 1, \\ 0 & \text{if } s \geq 1. \end{cases}
$$

$$
\implies z = \begin{cases} 1 & \text{if } s \le 0, \\ 1 - s & \text{if } 0 \le s \le 1, \\ 0 & \text{if } s \ge 1. \end{cases}
$$
 (2)

$$
\frac{dx}{dt} = z \Longrightarrow \frac{dx}{dt} = \begin{cases} 1 & \text{if } s \le 0, \\ 1 - s & \text{if } 0 \le s \le 1, \\ 0 & \text{if } s \ge 1. \end{cases}
$$

$$
\implies x = \begin{cases} t + c_2 & \text{if } s \le 0, \\ t - st + c_3 & \text{if } 0 \le s \le 1, \\ 0 + c_4 & \text{if } s \ge 1. \end{cases}
$$

$$
\implies x(s,0) = s = \begin{cases} 0+c_2 & \text{if } s \le 0, \\ 0+c_3 & \text{if } 0 \le s \le 1, \\ 0+c_4 & \text{if } s \ge 1. \end{cases}
$$

$$
\implies x = \begin{cases} t+s & \text{if } s \le 0, \\ t-st+s & \text{if } 0 \le s \le 1, \\ s & \text{if } s \ge 1. \end{cases}
$$
 (3)

We will show that $x = yf(s) + s$. $\sqrt{ }$ $y(1) + s$ if $s \leq 0$,

Since $y = t$ from (1), we get, $yf(s) + s =$ $\sqrt{ }$ \int \mathcal{L} $t + s$ if $s \leq 0$, $t(1-s) + s$ if $0 \leq s \leq 1$, s if $1 \leq s$. Hence $y f(s) + s = x$. Hence the characteristic curves are straight lines intersecting the x− axis at $(s, 0).$

xxxxxxxxx