

Art's Commerce and Science College, Onde Tal:- Vikramgad, Dist:- Palghar

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher

UNIT II : Compatible System of First Order Partial Differential Equations

Subject Teacher
Santosh Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

ssdhamone@acscollegeonde.ac.in

July 29, 2023

Contents

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon Definition, Necessary and sufficient condition for integrability,

Compatible System of First Order PDE

Charpit's method,

Some standard types,

Jacobi's method.

My Inspiration
Late. Shivlal
Dhamone
and
Shri V. G. Pat

Subject Teacher Santosh Dhamon

Compatible Differential Equations

Let f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 be first order partial differentiable equations. If every solution of f = 0 is also solution of g = 0 and

Jacobian
$$J = \frac{\partial(f,g)}{\partial(p,q)} \neq 0$$

then this two equations f and g are said to be Compatiable.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Theorem:

Show that the condition for f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 compatiable is [f, g] = 0 i.e. $\frac{\partial (f, g)}{\partial (x, p)} + \frac{\partial (f, g)}{\partial (y, q)} + p \frac{\partial (f, g)}{\partial (z, p)} + q \frac{\partial (f, g)}{\partial (z, q)} = 0$

Proof

Let

$$f(x, y, z, p, q) = 0 (1)$$

$$g(x, y, z, p, q) = 0$$
 (2)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teache Santosh Dhamo

Proof of Theorem Continue...

be first order partial differential equations. From (1) and (2) we obtain

$$p = \Phi(x, y, z), \quad q = \Psi(x, y, z)$$

The condition that equations (1) and (2) should be compatible reduces to p dx + q dy = dz is integrable.

$$\therefore \Phi dx + \Psi dy - dz = 0$$
 (3)

is integrable.

Let
$$\bar{X} = (\Phi, \Psi, -1)$$
 then $\bar{X}.Curl\bar{X} = 0$

My Inspiration
Late. Shivlal
Dhamone
and
Shri V G Pat

Subject Teache Santosh Dhamo

Proof of Theorem Continue...

Now,
$$Curl\bar{X} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \Phi & \Psi & -1 \end{vmatrix}$$

$$= (0 - \frac{\partial \Psi}{\partial z})\hat{i} - (0 - \frac{\partial \Phi}{\partial z})\hat{j} + (\frac{\partial \Psi}{\partial x} - \frac{\partial \Phi}{\partial y})\hat{k}$$

$$= -\frac{\partial \Psi}{\partial z}\hat{i} + \frac{\partial \Phi}{\partial z}\hat{j} + (\frac{\partial \Psi}{\partial x} - \frac{\partial \Phi}{\partial y})\hat{k}$$

$$\bar{X}.Curl\bar{X} = (\Phi\hat{i}, \Psi\hat{j}, -1\hat{k}).[-\frac{\partial \Psi}{\partial z}\hat{i} + \frac{\partial \Phi}{\partial z}\hat{j} + (\frac{\partial \Psi}{\partial x} - \frac{\partial \Phi}{\partial y})\hat{k}]$$

$$-\Phi\frac{\partial \Psi}{\partial z} + \Psi\frac{\partial \Phi}{\partial z} - \frac{\partial \Psi}{\partial x} + \frac{\partial \Phi}{\partial y} = 0$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

$$\Psi \frac{\partial \Phi}{\partial z} + \frac{\partial \Phi}{\partial y} = \Phi \frac{\partial \Psi}{\partial z} + \frac{\partial \Psi}{\partial x} \tag{4}$$

Differentiate (1) w.r.t x and z,
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial p} \cdot \frac{\partial p}{\partial x} + \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x} = 0$$

$$\therefore f_x + f_p \Phi_x + f_q \Psi_x = 0$$
 (5)

and
$$\frac{\partial f}{\partial z} + \frac{\partial f}{\partial p} \cdot \frac{\partial p}{\partial z} + \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial z} = 0$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teach Santosh Dhamo

Proof of Theorem Continue...

$$\therefore f_z + f_p \Phi_z + f_q \Psi_z = 0 \tag{6}$$

Multiply equation (6) by Φ then add it to equation (5)

$$(f_x + \Phi f_z) + f_p(\Phi_x + \Phi \Phi_z) + f_q(\Psi_x + \Phi \Psi_z) = 0 \quad (7)$$

Differentiate (2) w.r.t x and z and as above, we get,

$$(g_x + \Phi g_z) + g_p(\Phi_x + \Phi \Phi_z) + g_q(\Psi_x + \Phi \Psi_z) = 0 \quad (8)$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamo

Proof of Theorem Continue...

Multiply equation (7) by g_p and (8) by f_p then take (7)-(8)

$$g_{p}(f_{x} + \Phi f_{z}) + g_{p}f_{p}(\Phi_{x} + \Phi \Phi_{z}) + g_{p}f_{q}(\Psi_{x} + \Phi \Psi_{z}) - f_{p}(g_{x} + \Phi g_{z}) - f_{p}g_{p}(\Phi_{x} + \Phi \Phi_{z}) - f_{p}g_{q}(\Psi_{x} + \Phi \Psi_{z}) = 0$$
 $g_{p}(f_{x} + \Phi f_{z}) + g_{p}f_{q}(\Psi_{x} + \Phi \Psi_{z}) - f_{p}(g_{x} + \Phi g_{z}) - f_{p}g_{q}(\Psi_{x} + \Phi \Psi_{z}) = 0$

$$g_{p}(f_{x} + \Phi f_{z}) - f_{p}(g_{x} + \Phi g_{z}) + (\Psi_{x} + \Phi \Psi_{z})(g_{p}f_{q} - f_{p}g_{q}) = 0$$

$$\Phi(g_{p}f_{z} - f_{p}g_{z}) + (f_{x}g_{p} - g_{x}f_{p}) + (\Psi_{x} + \Phi \Psi_{z})(g_{p}f_{q} - f_{p}g_{q}) = 0$$

$$(f_{x}g_{p} - g_{x}f_{p}) + \Phi(g_{p}f_{z} - f_{p}g_{z}) = (\Psi_{x} + \Phi \Psi_{z})(f_{p}g_{q} - (g_{p}f_{q})$$

$$\therefore \frac{\partial(f, g)}{\partial(x, p)} + \Phi \frac{\partial(f, g)}{\partial(z, p)} = J(\Psi_{x} + \Phi \Psi_{z})$$

My Inspiration
Late. Shivlal
Dhamone
and
Shri. V. G. Pat

Saheb Subject Teach Santosh Dhamo

$$\therefore \quad (\Psi_x + \Phi \Psi_z) = \frac{1}{J} \quad \left[\frac{\partial (f, g)}{\partial (x, p)} + p \frac{\partial (f, g)}{\partial (z, p)} \right] \tag{9}$$

Similarly diff. eq^{ns} (1) and (2) w.r.t y and z, we obtain

$$\therefore \quad (\Phi_y + \Psi \Phi_z) = \frac{-1}{J} \quad \left[\frac{\partial (f, g)}{\partial (y, q)} + q \frac{\partial (f, g)}{\partial (z, q)} \right] \quad (10)$$

Using equation (4) we get, $\frac{\partial(f,g)}{\partial(x,p)} + \frac{\partial(f,g)}{\partial(y,q)} + p\frac{\partial(f,g)}{\partial(z,p)} + q\frac{\partial(f,g)}{\partial(z,q)} = 0$

[f,g] = 0 It is condition for f and g are to be compatible.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teache Santosh Dhamo

Problem 1:

Show that the PDE xp = yq and z(xp + yq) = 2xy are compatible. Find Solution

Solution:

Let

$$f = x p - y q = 0$$
 (11)

$$g = z(xp + yq) - 2xy = 0$$
 (12)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil Saheb

Subject Teache Santosh Dhamor

$$\frac{\partial(f,g)}{\partial(x,p)} = \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial p} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial p} \end{vmatrix} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial p} - \frac{\partial f}{\partial p} \frac{\partial g}{\partial x}$$
$$= p(zx) - x(zp - 2y) = zpx - zpx + 2xy = 2xy$$

$$\frac{\partial(f,g)}{\partial(x,p)} = 2xy$$

$$\frac{\partial(f,g)}{\partial(y,q)} = \begin{vmatrix} \frac{\partial f}{\partial y} & \frac{\partial f}{\partial q} \\ \frac{\partial g}{\partial y} & \frac{\partial g}{\partial q} \end{vmatrix} = \begin{vmatrix} -q & -y \\ zq - 2x & zy \end{vmatrix} = -2xy$$

$$\frac{\partial(f,g)}{\partial(y,g)} = -2xy$$

$$\frac{\partial(f,g)}{\partial(z,p)} = \begin{vmatrix} \frac{\partial f}{\partial z} & \frac{\partial f}{\partial p} \\ \frac{\partial g}{\partial z} & \frac{\partial g}{\partial p} \end{vmatrix} = \begin{vmatrix} 0 & x \\ xp + yq & zx \end{vmatrix} = -x(xp + yq)$$

$$\frac{\partial(f,g)}{\partial(z,p)}=-x(xp+yq)$$

$$\frac{\partial(f,g)}{\partial(z,q)} = \begin{vmatrix} \frac{\partial f}{\partial z} & \frac{\partial f}{\partial q} \\ \frac{\partial g}{\partial z} & \frac{\partial g}{\partial q} \end{vmatrix} = \begin{vmatrix} 0 & -y \\ xp + yq & zy \end{vmatrix} = y(xp + yq)$$

$$\frac{\partial(f,g)}{\partial(z,g)} = y(xp + yq)$$

Solution of Problem 1 Continue...

Condition for Compatible is

$$[f,g] = \frac{\partial(f,g)}{\partial(x,p)} + \frac{\partial(f,g)}{\partial(y,q)} + p\frac{\partial(f,g)}{\partial(z,p)} + q\frac{\partial(f,g)}{\partial(z,q)}$$

$$= 2xy - 2xy + p[-x(xp+yq)] + qy(xp+yq)$$

$$= -x^{2}p^{2} - xypq + xypq + y^{2}q^{2}$$

$$= y^{2}q^{2} - x^{2}p^{2}$$

$$[f,g] = 0$$

$$[f,g]=0$$

- : f and g satisfies the condition of Compatibility.
- :. Given PDE are compatible.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teacher Santosh Dhamo

Solution of Problem 1 Continue...

By equation (11) xp = yqUsing this in (12) z(xp + xp) = 2xy $2xpz = 2xy \implies p = \frac{y}{x}$ Using value of p in $(11)^z$, we get $x(\frac{y}{-}) = yq \implies q = \frac{x}{-}$ Using p and q in p dx + q dy = dz $\therefore \frac{y}{-}dx + \frac{x}{-}dy = dz \implies ydx + x dy = zdz$ $\therefore d(xy) = zdz$ Integrating, we get $xy = \frac{z^2}{2} + c$

 $2xy - z^2 = c$ Required Solution.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teache Santosh Dhamor

Problem 2:

Show that the PDE xp - yq = x and $x^2p + q = xz$ are compatible. Hence find Solution

Solution:

Let

$$f = x p - y q - x = 0$$
 (13)

$$g = x^2 p + q - xz = 0 (14)$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil Saheb

Subject Teacher Santosh Dhamor

Solution of Problem 2 Continue...

$$\frac{\partial (f,g)}{\partial (x,p)} = \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial p} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial p} \end{vmatrix} = \begin{vmatrix} p-1 & x \\ 2xp-z & x^2 \end{vmatrix} = x^2(p-1) - x(2xp-z)$$

$$\frac{\partial(f,g)}{\partial(x,p)} = x^2(p-1) - x(2xp-z)$$

$$\frac{\partial(f,g)}{\partial(y,q)} = \begin{vmatrix} \frac{\partial f}{\partial y} & \frac{\partial f}{\partial q} \\ \frac{\partial g}{\partial y} & \frac{\partial g}{\partial z} \end{vmatrix} = \begin{vmatrix} -q & -y \\ 0 & 1 \end{vmatrix} = -q$$

$$\frac{\partial(f,g)}{\partial(y,q)}=-q$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil Saheb

Subject Teacher Santosh Dhamon

$$\frac{\partial(f,g)}{\partial(z,p)} = \begin{vmatrix} \frac{\partial f}{\partial z} & \frac{\partial f}{\partial p} \\ \frac{\partial g}{\partial z} & \frac{\partial g}{\partial p} \end{vmatrix} = \begin{vmatrix} 0 & x \\ -x & x^2 \end{vmatrix} = x^2$$

$$\frac{\partial(f,g)}{\partial(z,p)} = x^2$$

$$\frac{\partial(f,g)}{\partial(z,q)} = \begin{vmatrix} \frac{\partial f}{\partial z} & \frac{\partial f}{\partial q} \\ \frac{\partial g}{\partial z} & \frac{\partial g}{\partial z} \end{vmatrix} = \begin{vmatrix} 0 & -y \\ -x & 1 \end{vmatrix} = -xy$$

$$\frac{\partial(f,g)}{\partial(z,g)} = -xy$$

My Inspiration Late. Shivlal Dhamone and

Subject Teacher Santosh Dhamo

Solution of Problem 2 Continue

Condition for Compatible is

$$[f,g] = \frac{\partial(f,g)}{\partial(x,p)} + \frac{\partial(f,g)}{\partial(y,q)} + p\frac{\partial(f,g)}{\partial(z,p)} + q\frac{\partial(f,g)}{\partial(z,q)}$$

$$= x^{2}(p-1) - x(2xz-z) + px^{2} - q - qxy$$

$$= -x^{2}p - x^{2} - 2x^{2}p + xz + x^{2}p - q - qxy$$

$$= (xz - q) - x^{2} - qxy$$

$$= x^{2}p - x^{2} - qxy \dots \text{ by equation (14)}$$

$$= x(xp - yq) - x^{2}$$

$$= x.x - x^{2}$$

$$[f,g]=0$$

- ... f and g satisfies the condition of Compatibility.
- .: Given PDE are compatible.

My Inspiration
Late. Shivla
Dhamone
and
Shri V G Pa

Subject Teache Santosh Dhamo

Solution of Problem 2 Continue...

Multiply equation (14) by y then add it in equation (13) $(x + x^2y) p = x + xyz \implies x(1 + xy) p = x (1 + yz)$

$$p = \frac{1 + yz}{1 + xy}$$

$$\frac{1+yz}{1+xy} - yq = x \implies \frac{1+yz}{1+xy} - x = yq$$

$$\implies yq = \frac{x+xyz-x-x^2y}{1+xy} \implies yq = \frac{y(xz-x^2)}{1+xy}$$

$$q = \frac{x(z-x)}{1+xy}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teache Santosh Dhamo

Solution of Problem 2 Continue..

Using p and q in p dx + q dy = dz

$$\therefore \frac{1+yz}{1+xy}dx + \frac{x(z-x)}{1+xy}dy = dz$$

It is Pfaffian Differential Equation

Take
$$x = constant \implies dx = 0$$

$$\therefore (xz - x^2)dy - (1 + xy)dz = 0$$

$$\therefore x(z-x) dy - (1+xy) dz = 0$$

Dividing throughout by (z-x)(1+xy)

$$\therefore \frac{x}{1+xy}dy - \frac{dz}{z-x} = 0$$

Integrating, we get

$$\ln(1+xy) - \ln(z-x) = \ln c_1$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati Saheb

Subject Teacher Santosh Dhamon

Solution of Problem 2 Continue...

$$\therefore \frac{1+xy}{z-x} = c_1 \text{ Hence Solution is of the form}$$

$$\frac{1+xy}{z-x}=\Phi(x)$$

Hence Required Solution is

$$\frac{1+xy}{z-x}=c$$

Charpit's Method

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Charpit's Auxiliary Equation

Show that the Charpit's Auxiliary Equation is $\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{f_x + pf_z} = \frac{-dq}{f_y + qf_z}$

Proof

Let

$$f(x, y, z, p, q) = 0$$
 (15)

be first order partial differential equation where \boldsymbol{x} , \boldsymbol{y} are independent and \boldsymbol{z} is dependent variable.

$$\therefore z = z (x, y)$$

$$\therefore dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

$$\therefore$$
 dz=p dx + q dy

$$F(x, y, z, p, q) = 0$$
 (17)

(16)

such that values of p and q obtained from (15) and (17) makes equation (16) integrable.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Proof of Charpit's Auxiliary Equation...

The solution of (16) is complete integral of (15).

Differentiate (15) and (17) w.r.t. x
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial x} + \frac{\partial f}{\partial p} \cdot \frac{\partial p}{\partial x} + \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x} = 0$$

$$\frac{\partial f}{\partial x} + p \frac{\partial f}{\partial z} + \frac{\partial f}{\partial p} \cdot \frac{\partial p}{\partial x} + \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x} = 0$$
 (18)

Similarly,

$$\frac{\partial F}{\partial x} + p \frac{\partial F}{\partial z} + \frac{\partial F}{\partial p} \cdot \frac{\partial p}{\partial x} + \frac{\partial F}{\partial q} \cdot \frac{\partial q}{\partial x} = 0$$
 (19)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teache Santosh Dhamor

Proof of Charpit's Auxiliary Equation...

Multiply to (18) by
$$\frac{\partial F}{\partial p}$$
 and (19) by $\frac{\partial f}{\partial p}$ then take (18) -(19)
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial x} + \frac{\partial f}{\partial p} \cdot \frac{\partial p}{\partial x} + \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x} = 0$$

$$\left(\frac{\partial f}{\partial x}\frac{\partial F}{\partial p} - \frac{\partial F}{\partial x}\frac{\partial f}{\partial p}\right) + p\left(\frac{\partial f}{\partial z}\frac{\partial F}{\partial p} - \frac{\partial F}{\partial z}\frac{\partial f}{\partial p}\right) + \frac{\partial q}{\partial x}\left(\frac{\partial f}{\partial q}\frac{\partial F}{\partial p} - \frac{\partial F}{\partial q}\frac{\partial f}{\partial p}\right) = 0$$
(20)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teacher Santosh Dhamon

Differentiate (15) and (17) w.r.t. y, we get [In (20) replace x = y, p = q, q = p]

$$\left(\frac{\partial f}{\partial y}\frac{\partial F}{\partial q} - \frac{\partial F}{\partial y}\frac{\partial f}{\partial q}\right) + q\left(\frac{\partial f}{\partial z}\frac{\partial F}{\partial q} - \frac{\partial F}{\partial z}\frac{\partial f}{\partial q}\right) + \frac{\partial p}{\partial y}\left(\frac{\partial f}{\partial p}\frac{\partial F}{\partial q} - \frac{\partial F}{\partial p}\frac{\partial f}{\partial q}\right) = 0$$

Now,
$$\frac{\partial q}{\partial x} = \frac{\partial}{\partial x} (\frac{\partial z}{\partial y}) = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$
$$= \frac{\partial}{\partial y} (\frac{\partial z}{\partial x}) = \frac{\partial p}{\partial y} \implies \frac{\partial q}{\partial x} = \frac{\partial p}{\partial y}$$

(21)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Proof of Charpit's Auxiliary Equation...

Adding equations (20) and (21), we get
$$\left(\frac{\partial f}{\partial x}\frac{\partial F}{\partial p} - \frac{\partial F}{\partial x}\frac{\partial f}{\partial p}\right) + p\left(\frac{\partial f}{\partial z}\frac{\partial F}{\partial p} - \frac{\partial F}{\partial z}\frac{\partial f}{\partial p}\right) + \left(\frac{\partial f}{\partial y}\frac{\partial F}{\partial q} - \frac{\partial F}{\partial y}\frac{\partial f}{\partial q}\right) + q\left(\frac{\partial f}{\partial z}\frac{\partial F}{\partial q} - \frac{\partial F}{\partial z}\frac{\partial f}{\partial q}\right) = 0$$

$$\therefore \frac{\partial F}{\partial x}\left(-\frac{\partial f}{\partial p}\right) + \frac{\partial F}{\partial y}\left(-\frac{\partial f}{\partial q}\right) + \frac{\partial F}{\partial z}\left(-p\frac{\partial f}{\partial p} - q\frac{\partial f}{\partial q}\right) + \frac{\partial F}{\partial p}\left(\frac{\partial f}{\partial x} + p\frac{\partial f}{\partial z}\right) + \frac{\partial F}{\partial q}\left(\frac{\partial f}{\partial y} + q\frac{\partial f}{\partial z}\right) = 0$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teache Santosh Dhamor

Proof of Charpit's Auxiliary Equation...

$$\frac{dx}{-f_p} = \frac{dy}{-f_q} = \frac{dz}{-p f_p - q f_q} = \frac{dp}{f_x + p f_z} = \frac{dq}{f_y + q f_z}$$

$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{f_x + pf_z} = \frac{-dq}{f_y + qf_z}$$

It is known as Charpit's Auxiliary equation. Finding expression for p and q from (15) and Charpit's Auxiliary equation putting this value in (16) and on integration, we get required result.

Solution of PDE by using Charpit's Method

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat Saheb

Subject Teache Santosh Dhamo

Problem 1:

Solve the PDE $(p^2 + q^2)y = qz$ by Charpit's method

Solution

Let

$$f = (p^{2} + q^{2})y - qz = 0$$

$$\frac{\partial f}{\partial x} = f_{x} = 0$$

$$\frac{\partial f}{\partial y} = f_{y} = p^{2} + q^{2}$$
(22)

Solution of PDE by using Charpit's Method

Solution of Problem 1 Continue...

$$\frac{\partial f}{\partial z} = f_z = -q$$

$$\frac{\partial f}{\partial p} = f_p = 2py$$

$$\frac{\partial f}{\partial q} = f_q = 2qy - z$$

Charpit's Auxiliary equation is,
$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{f_x + pf_z} = \frac{-dq}{f_y + qf_z}$$

$$\frac{dx}{2py} = \frac{dy}{2qy - z} = \frac{dz}{2p^2y + 2q^2y - qz} = \frac{-dp}{0 + (-pq)} = \frac{-dq}{p^2 + q^2 - q^2}$$

Solution of PDE by using Charpit's Method

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamor

Solution of Problem 1 Continue...

$$\frac{dx}{2py} = \frac{dy}{2qy - z} = \frac{dz}{2p^2y + 2q^2y - qz} = \frac{-dp}{-pq} = \frac{-dq}{p^2}$$
Consider two last ratios
$$\frac{dp}{pq} = \frac{-dq}{p^2} \implies \frac{dp}{q} = \frac{-dq}{p} \implies pdp = -qdq$$
Integrating,
$$\frac{p^2}{2} + \frac{q^2}{2} = a \implies p^2 + q^2 = a$$
Using $p^2 + q^2 = a$ in equation (22)
$$ay = qz \implies q = \frac{ay}{z}$$
Using $q = \frac{ay}{z}$ in $p^2 + q^2 = a$

Solution of PDE by using Charpit's Method

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 1 Continue...

$$p^{2} + \left(\frac{ay}{z}\right)^{2} = a \implies p^{2} = a - \frac{a^{2}y^{2}}{z^{2}}$$

$$\implies p^{2} = \frac{az^{2} - a^{2}y^{2}}{z^{2}} \implies p = \frac{\sqrt{az^{2} - a^{2}y^{2}}}{z}$$

$$\text{Consider, } p \ dx + q \ dy = dz$$

$$\therefore \frac{\sqrt{az^{2} - a^{2}y^{2}}}{z} \ dx + \frac{ay}{z} dy = dz$$

$$\sqrt{az^{2} - a^{2}y^{2}} \ dx + \text{ay dy} = z \ dz$$

$$\sqrt{a}(\sqrt{z^{2} - ay^{2}}) \ dx = z \ dz - \text{ay dy}$$

$$\sqrt{a} \ dx = \frac{zdz - aydy}{\sqrt{z^{2} - ay^{2}}}$$
Integrating we get,
$$\sqrt{a} \ x = \sqrt{z^{2} - ay^{2}} + b \dots \text{Required Solution.}$$

Solution of PDE by using Charpit's Method

Problem 2:

Solve the PDE $p = (z + qy)^2$ by Charpit's method

Solution

Let

$$f = p - (z + qy)^{2} = 0$$

$$\frac{\partial f}{\partial x} = f_{x} = 0$$

$$\frac{\partial f}{\partial y} = f_{y} = -2(z + qy).q$$
(23)

$$\frac{\partial f}{\partial y} = f_y = -2(z + qy).$$

Solution of PDE by using Charpit's Method

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 2 Continue...

$$\frac{\partial f}{\partial z} = f_z = -2(z + qy)$$

$$\frac{\partial f}{\partial p} = f_p = 1$$

$$\frac{\partial f}{\partial q} = f_q = -2(z + qy).y$$
Charpit's Auxiliary equation is,
$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{f_x + pf_z} = \frac{-dq}{f_y + qf_z}$$

$$\frac{dx}{1} = \frac{dy}{-2y(z + qy)} = \frac{dz}{p - 2yq(z + qy)} = \frac{-dq}{-2p(z + qy)}$$

Solution of PDE by using Charpit's Method

My Inspiration
Late. Shivlal
Dhamone
and

Subject Teache Santosh Dhamoi

Solution of Problem 2 Continue...

Consider
$$\frac{dy}{-2y(z+qy)} = \frac{-dp}{-2p(z+qy)}$$

$$\therefore \frac{dy}{-y} = \frac{dp}{p}$$
Integrating,
$$-\ln y = \ln p - \ln a \implies \ln y + \ln p = \ln a \implies yp = a$$

$$\therefore p = \frac{a}{y}$$
Using $p = \frac{a}{y}$ in equation (23)
$$\frac{a}{v} = (z+qy)^2 \implies z + qy = \sqrt{\frac{a}{v}} \implies qy = \sqrt{\frac{a}{v}} - z$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati Saheb

Subject Teacher Santosh Dhamon

Consider,
$$p \, dx + q \, dy = dz$$

$$\therefore \frac{a}{y} \, dx + \frac{1}{y} \left(\sqrt{\frac{a}{y}} - z \right) dy = dz$$

$$\therefore \frac{a}{y} \, dx + \frac{1}{y} \left(\sqrt{\frac{a}{y}} - z \right) dy = dz$$

$$adx + \sqrt{\frac{a}{y}} dy = ydz + zdy$$

$$a \, dx + \sqrt{\frac{a}{y}} dy = d(yz)$$
Integrating we get,
$$ax + 2\sqrt{ay} = yz + b$$

$$ax + 2\sqrt{ay} - yz = b$$
This is Required Complete Integral.

0

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat Saheb

Subject Teach Santosh Dhame

Problem 3:

Solve the PDE $2xz - px^2 - 2qxy + pq = 0$ by Charpit's method

Solution

Let

$$\frac{\partial f}{\partial x} = f_x = 2z - 2px - 2qy$$
$$\frac{\partial f}{\partial y} = f_y = -2qx$$

 $f = 2xz - px^2 - 2qxy + pq = 0$

(24)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon Solution of Problem 3 Continue...

$$\frac{\partial f}{\partial z} = f_z = 2x$$

$$\frac{\partial f}{\partial p} = f_p = x^2 + q$$

$$\frac{\partial f}{\partial q} = f_q = p - 2xy$$

Charpit's Auxiliary equation is,

$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{f_x + pf_z} = \frac{-dq}{f_y + qf_z}$$

$$\frac{\frac{dx}{x^2 + q}}{\frac{dx}{x^2 + q}} = \frac{\frac{dy}{p - 2xy}}{\frac{dx}{p - 2xy}} = \frac{\frac{dz}{p(x^2 + q) + q(p - 2xy)}}{\frac{dz}{px^2 + 2pq - 2qxy}} = \frac{\frac{-dp}{2z - 2qy}}{\frac{-dp}{z - 2qy}} = \frac{\frac{dq}{0}}{0}$$

My Inspiration
Late. Shivlal
Dhamone
and

Subject Teacher

Solution of Problem 3 Continue...

Consider,
Each Ratio =
$$\frac{dq}{0}$$

 $\therefore dq = 0$
Integrating, we get
 $\therefore q = a$
Using $q = a$ in equation (24)
 $2xz - px^2 - 2axy + pa = 0$
 $\therefore p(a - x^2) = 2axy - 2xz$
 $\therefore p = \frac{2x(ay - z)}{2ax^2}$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamor

Solution of Problem 3 Continue.

Consider,
$$p \, dx + q \, dy = dz$$

$$\therefore \frac{2x(ay-z)}{a-x^2} \, dx + a \, dy = dz$$
Divide throughout by $(ay-z)$, we get,
$$\therefore \frac{2x}{a-x^2} \, dx + \frac{a}{(ay-z)} \, dy = \frac{dz}{(ay-z)}$$

$$\therefore -\frac{-2x}{a-x^2} \, dx + \frac{ady-dz}{(ay-z)} = 0$$
Integrating we get,
$$-\ln(a-x^2) + \ln(ay-z) = \ln b$$

$$\ln\frac{ay-z}{a-x^2} = \ln b$$

$$\frac{ay-z}{a-x^2} = b.... \text{ This is Required Complete Integral.}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat Saheb

Subject Teache Santosh Dhamoi

Problem 4:

Solve the PDE $2(z + xp + yq) = yp^2$ by Charpit's method

Solution

Let

$$f = 2(z + xp + yq) - yp^{2} = 0$$

$$\frac{\partial f}{\partial x} = f_{x} = 2p$$

$$\frac{\partial f}{\partial y} = f_{y} = 2q - p^{2}$$
(25)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamor Solution of Problem 4 Continue...

$$\frac{\partial f}{\partial z} = f_z = 2$$

$$\frac{\partial f}{\partial p} = f_p = 2x - 2yp$$

$$\frac{\partial f}{\partial q} = f_q = 2y$$

Charpit's Auxiliary equation is,

$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{f_x + pf_z} = \frac{-dq}{f_y + qf_z}$$

$$\frac{\frac{dx}{2x - 2yp}}{\frac{dx}{2x - 2yp}} = \frac{\frac{dy}{2y}}{\frac{dy}{2y}} = \frac{\frac{dz}{2xp - 2yp^2 + 2yq}}{\frac{dz}{2xp - 2yp^2 + 2yq}} = \frac{\frac{-dq}{2q - p^2 + 2q}}{4p} = \frac{-dq}{4q - p^2}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil Saheb

Subject Teacher Santosh Dhamon

Solution of Problem 4 Continue...

Consider,

$$\frac{dy}{2y} = \frac{-dp}{4p}$$
Integrating, we get

$$2 \ln y = -\ln p + \ln a$$

$$\ln y^2 + \ln p = \ln a \Longrightarrow \ln y^2 p = \ln a$$

$$\therefore p = \frac{a}{y^2}$$
Using $p = \frac{a}{y^2}$ in equation (25)

$$2z + 2x\frac{a}{y^2} + 2yq - y(\frac{a}{y^2})^2 = 0$$

$$\therefore 2z + \frac{2ax}{v^2} + 2yq - (\frac{a^2}{v^3}) = 0$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 4 Continue...

$$\therefore q = \frac{a^2}{2y^4} - \frac{z}{y} - \frac{xa}{y^3}$$
Consider, $p \ dx + q \ dy = dz$

$$\therefore \frac{a}{y^2} \ dx + \left(\frac{a^2}{2y^4} - \frac{z}{y} - \frac{xa}{y^3}\right) \ dy = dz$$

$$\therefore \frac{a}{y^2} \ dx + \frac{a^2}{2y^4} \ dy - \frac{z}{y} \ dy - \frac{xa}{y^3} \ dy = dz$$

$$a\left(\frac{ydx - xdy}{y^3}\right) + \frac{a^2}{2} \frac{dy}{y^3} = ydz + zdy$$

$$ad\left(\frac{x}{y}\right) + \frac{a^2}{2} \frac{dy}{y^3} = d(yz)$$
Integrating we get,

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil Saheb

Subject Teacher Santosh Dhamon

Solution of Problem 4 Continue...

Integrating we get,

$$a\frac{x}{y} - \frac{a^2}{4y^2} = yz + b$$

$$\frac{ax}{y} - \frac{a^2}{4y^2} - yz = b$$

This is Required Complete Integral.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati Saheb

Subject Teacher Santosh Dhamo

Problem 5:

Solve the PDE pxy + pq + qy = yz by Charpit's method

Solution

Let

$$f = pxy + pq + qy - yz = 0$$

$$\frac{\partial f}{\partial x} = f_x = py$$

$$\frac{\partial f}{\partial y} = f_y = q - z$$
(26)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon Solution of Problem 5 Continue...

$$\frac{\partial f}{\partial z} = f_z = -y$$

$$\frac{\partial f}{\partial p} = f_p = xy + q$$

$$\frac{\partial f}{\partial q} = f_q = p + y$$

Charpit's Auxiliary equation is,

Charpit's Auxiliary equation is,
$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{p f_p + q f_q} = \frac{-dp}{f_x + p f_z} = \frac{-dq}{f_y + q f_z}$$

$$\frac{dx}{xy + q} = \frac{dy}{p + y} = \frac{dz}{xyp + qp + pq + yq} = \frac{-dp}{yy - yp} = \frac{-dq}{q - z - qy}$$

$$\frac{dx}{xy + q} = \frac{dy}{p + y} = \frac{dz}{xyp + 2pq + yq} = \frac{-dp}{0} = \frac{-dq}{q - z - qy}$$

My Inspiration
Late. Shivlal
Dhamone
and
Shri V. G. Pari

Subject Teacher

Solution of Problem 5 Continue...

Consider,

$$EachRatio = \frac{dp}{0}$$

$$\therefore dp = 0$$
Integrating, we get
$$\therefore p = a$$
Using $p = a$ in equation (26)
$$axy + aq + qy - yz = 0$$

$$q(a + y) = yz - axy$$

$$\therefore q = \frac{y(z - ax)}{a + y}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 5 Continue...

Consider,
$$p \, dx + q \, dy = dz$$

 $\therefore a \, dx + \frac{y(z - ax)}{a + y} \, dy = dz$
 $\therefore \frac{y(z - ax)}{a + y} \, dy = dz - a \, dx$
 $\therefore \frac{y}{a + y} \, dy = \frac{dz - adx}{(z - ax)}$
 $\therefore \frac{y + a - a}{a + y} \, dy = \frac{dz - adx}{(z - ax)}$
 $\therefore \left(1 - \frac{a}{a + y}\right) \, dy = \frac{dz - adx}{(z - ax)}$

My Inspiration
Late. Shivlal
Dhamone
and
Shri V G Pati

Subject Teacher Santosh Dhamon

Solution of Problem 5 Continue...

Integrating we get,

$$y - a \ln (a + y) = \ln (z - ax) + b$$

 $y - \ln (a + y)^a - \ln (z - ax) = b$
 $y - [\ln (a + y)^a + \ln (z - ax)] = b$
 $y - \ln (a + y)^a (z - ax) = b$
 $y - b = \ln (a + y)^a (z - ax)$
 $(a + y)^a (z - ax) = e^{y - b}$
 $(a + y)^a (z - ax) = ce^y$

This is Required Complete Integral.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati Saheb

Subject Teache Santosh Dhamo

Problem 6:

Solve the PDE $p^2x + q^2y = z$ by Charpit's method

Solution

Let

$$f = p^{2}x + q^{2}y - z = 0$$

$$\frac{\partial f}{\partial x} = f_{x} = p^{2}$$

$$\frac{\partial f}{\partial y} = f_{y} = q^{2}$$
(27)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 6 Continue.

$$\frac{\partial f}{\partial z} = f_z = -1$$

$$\frac{\partial f}{\partial p} = f_p = 2px$$

$$\frac{\partial f}{\partial q} = f_q = 2qy$$

Charpit's Auxiliary equation is,

$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{p f_p + q f_q} = \frac{-dp}{f_x + p f_z} = \frac{-dq}{f_y + q f_z}$$

$$\frac{dx}{2px} = \frac{dy}{2qy} = \frac{dz}{2p^2x + 2q^2y} = \frac{-dp}{p^2 - p} = \frac{-dq}{q^2 - q}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 6 Continue...

Consider,
$$\mathsf{Each}\ \mathsf{Ratio} = \frac{p^2 dx + 2pxdp}{2p^2x}$$

$$\mathsf{Similarly,}$$

$$\mathsf{Each}\ \mathsf{Ratio} = \frac{q^2 dy + 2qydq}{2q^2y}$$

$$\frac{p^2 dx + 2pxdp}{2p^2x} = \frac{q^2 dy + 2qydq}{2q^2y}$$

$$\mathsf{Integrating,we}\ \mathsf{get}$$

$$\mathsf{In}\ p^2x = \mathsf{In}\ q^2y \implies \mathsf{p}^2 = \frac{ayq^2}{2q^2y}$$

$$\mathsf{In}\ \mathsf{p}^2x = \mathsf{In}\ \mathsf{p}^2x = \mathsf{p}^2x = \mathsf{p}^2x \implies \mathsf{p}^2 = \frac{\mathsf{p}^2}{\mathsf{p}^2}$$

$$\therefore p = \sqrt{\frac{ay}{x}}q$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 6 Continue...

Using
$$p = \sqrt{\frac{ay}{x}}q$$
 in equation (27)
$$\frac{ayq^2}{x}x + q^2y = z$$

$$q^2y(1+a) = z \implies q^2 = \frac{z}{y(1+a)}$$

$$\therefore q = \sqrt{\frac{z}{y(1+a)}}$$
using value of q in p
$$p = \sqrt{\frac{ay}{x}}\sqrt{\frac{z}{y(1+a)}}$$

$$\therefore p = \sqrt{\frac{az}{x(1+a)}}$$

My Inspiration Late. Shivlal Dhamone and

Shri. V. G. Pati Saheb

Subject Teacher Santosh Dhamon

Solution of Problem 6 Continue...

Consider,
$$p \, dx + q \, dy = dz$$

$$\sqrt{\frac{az}{x(1+a)}} dx + \sqrt{\frac{z}{y(1+a)}} dy = dz$$

$$\sqrt{\frac{a}{(1+a)}} \frac{dx}{\sqrt{x}} + \sqrt{\frac{1}{(1+a)}} \frac{dy}{\sqrt{y}} = \frac{dz}{\sqrt{z}}$$
Integrating we get,
$$\sqrt{\frac{a}{(1+a)}} 2\sqrt{x} + \sqrt{\frac{1}{(1+a)}} 2\sqrt{y} = 2\sqrt{z} + b$$

$$\sqrt{ax} + \sqrt{y} = \sqrt{a+1}(\sqrt{z} + b)$$
This is Paralized Correlate laterary

This is Required Complete Integral.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati Saheb

Subject Teacher Santosh Dhamo

Problem 7:

Solve the PDE $p^2x + qy = z$ by Charpit's method

Solution

Let

$$f = p^{2}x + qy - z = 0$$

$$\frac{\partial f}{\partial x} = f_{x} = p^{2}$$

$$\frac{\partial f}{\partial y} = f_{y} = q$$
(28)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamor

Solution of Problem 6 Continue..

$$\frac{\partial f}{\partial z} = f_z = -1$$

$$\frac{\partial f}{\partial p} = f_p = 2px$$

$$\frac{\partial f}{\partial q} = f_q = y$$

Charpit's Auxiliary equation is,

$$\frac{dx}{f_{p}} = \frac{dy}{f_{q}} = \frac{dz}{pf_{p} + qf_{q}} = \frac{-dp}{f_{x} + pf_{z}} = \frac{-dq}{f_{y} + qf_{z}}$$

$$\frac{dx}{2px} = \frac{dy}{y} = \frac{dz}{2p^{2}x + qy} = \frac{-dp}{p^{2} - p} = \frac{-dq}{q - q}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teache Santosh Dhamoi

Solution of Problem 7 Continue

Consider,
$$EachRatio = \frac{dq}{0}$$

$$\therefore dq = 0$$

$$Integrating, we get$$

$$\therefore q = a$$

$$Using q = a \text{ in equation (28)}$$

$$p^2x + ay - z = 0 \implies p^2x = z - ay \implies p^2 = \frac{z - ay}{x}$$

$$p = \sqrt{\frac{z - ay}{x}}$$

$$\therefore p = \sqrt{\frac{z - ay}{x}}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teacher Santosh Dhamon

Solution of Problem 7 Continue...

Consider,
$$\frac{p}{x} dx + q dy = dz$$

$$\sqrt{\frac{z - ay}{x}} dx + ady = dz$$

$$\sqrt{z - ay} \frac{dx}{\sqrt{x}} = dz - ady$$

$$\frac{dx}{\sqrt{x}} = \frac{dz - ady}{\sqrt{z - ay}}$$
Integrating we get,
$$2\sqrt{x} = 2\sqrt{z - ay} + b$$

$$\sqrt{x} - \sqrt{z - ay} = b$$

This is Required Complete Integral.

My Inspiration
Late. Shivlal
Dhamone
and
Shri V. C. Bot

Subject Teach

Type 1: PDE involving p and q only

PDE involving p and q only

The equation containing p and q only is of the form

$$f(p,q) = 0$$
 (29)

$$\frac{\partial f}{\partial x} = f_x = 0$$
$$\frac{\partial f}{\partial y} = f_y = 0$$

My Inspiration Late. Shivlal Dhamone and

Subject Teacher

Type 1: PDE involving p and q only Continue...

$$\frac{\partial f}{\partial z} = f_z = 0$$

$$\frac{\partial f}{\partial p} = f_p$$

$$\frac{\partial f}{\partial q} = f_q$$

Charpit's Auxiliary equation is,

Charpit's Auxiliary equation is,
$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{f_x + pf_z} = \frac{-dq}{f_y + qf_z}$$

$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{0} = \frac{-dq}{0}$$

My Inspiration
Late. Shivlal
Dhamone

Shri. V. G. Pati Saheb

Subject Teacher Santosh Dhamor

Type 1: PDE involving p and q only Continue...

Now,
$$EachRatio = \frac{-dp}{0}$$

 $\therefore dp = 0$
Integrating we get , $p = a$
Using $p = a$ in equation (29), we obtain $q = \Phi(a)$
using values of p and q in $p \ dx + q \ dy = dz$
 $a \ dx + \Phi(a) \ dy = dz$
Integrating $ax + \Phi(a)y = z + b$
 $ax + \Phi(a)y - z = b$

Type 1: PDE involving p and q only

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat Saheb

Subject Teache Santosh Dhamo

Problem 1:

Solve the PDE p + q = pq

Solution

Let

$$f = p + q - pq = 0$$

It contains only p and q.

Using p = a in equation (30) $\therefore a + q = aq$ (30)

Type 1: PDE involving p and q only

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teacher Santosh Dhamon

Solution of Problem 1 Continue...

$$\therefore \text{ aq -q} = \text{a}$$

$$\therefore \text{ q(a - 1)} = \text{a}$$

$$\therefore \text{ q} = \frac{a}{a - 1}$$

$$q = \frac{a}{a - 1}$$
Consider, $p \ dx + q \ dy = dz$

$$a \ dx + \frac{a}{a - 1} \ dy = dz$$
Integrating we get, $ax + \frac{ay}{a - 1} = z$

$$a(a - 1)x + ay = (a - 1)z... \text{ Required Solution}$$

My Inspiration
Late. Shivlal
Dhamone
and

Subject Teacher

Type 2: PDE not involving independent variables x and y

Type 2:PDE not involving independent variables \boldsymbol{x} and \boldsymbol{y}

The equation containing p and q only is of the form

$$f(p, q, z) = 0 (31)$$

$$\frac{\partial f}{\partial x} = f_x = 0$$
$$\frac{\partial f}{\partial y} = f_y = 0$$

My Inspiration
Late. Shivlal
Dhamone
and
Shri V. G. Pari

Subject Teacher

Type 2: PDE not involving independent variables x and y

$$\frac{\partial f}{\partial z} = f_z$$

$$\frac{\partial f}{\partial p} = f_p$$

$$\frac{\partial f}{\partial q} = f_q$$

Charpit's Auxiliary equation is,

$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{f_x + pf_z} = \frac{-dq}{f_y + qf_z}$$

$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{pf_z} = \frac{-dq}{qf_z}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teacher Santosh Dhamon

Type 2: PDE not involving independent variables x and y Continue

$$\Rightarrow \frac{-dp}{pf_z} = \frac{-dq}{qf_z}$$

$$\Rightarrow \frac{-dp}{p} = \frac{-dq}{q}$$
Integrating we get,
$$\ln p = \ln q + \ln a$$

$$\ln p = \ln aq$$

$$p = aq$$

Using p = a in equation (31), we obtain expression for q using values of p and q in $p \, dx + q \, dy = dz$ Integrating we get required solution

Late. Shivlal
Dhamone
and
Shri. V. G. Pat
Saheb

Subject Teach

Problem 1:

Solve the PDE $p^2z^2 + q^2 = 1$

Solution

It is of the form

$$f(p, q, z) = p^2 z^2 + q^2 - 1 = 0$$

(32)

Put
$$p = aq$$
 in (32) then $a^2q^2z^2 + q^2 = 1$

$$\Rightarrow q^2(a^2z^2 + 1) = 1 \Rightarrow q^2 = \frac{1}{a^2z^2 + 1}$$

$$q = \frac{1}{\sqrt{a^2z^2 + 1}}$$

My Inspiration Late. Shivial Dhamone and Shri. V. G. Patil Saheb

Subject Teacher Santosh Dhamor

Solution of Problem 1 Continue...

Using value of q in
$$p = aq$$

$$p = \frac{1}{\sqrt{a^2z^2 + 1}}$$
Consider, $p \ dx + q \ dy = dz$

$$\frac{a}{\sqrt{a^2z^2 + 1}} \ dx + \frac{1}{\sqrt{a^2z^2 + 1}} \ dy = dz$$

$$adx + dy = \sqrt{a^2z^2 + 1}dz$$
Integrating we get,
$$ax + y = a \int \sqrt{z^2 + \frac{1}{a^2}}$$

$$ax + y = a \left[\frac{z}{z} \sqrt{z^2 + \frac{1}{a^2}} + \frac{1}{2a^2} \ln \left(z + + \sqrt{z^2 + \frac{1}{a^2}} \right) \right]$$
This is Required Solution

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati Saheb

Subject Teache Santosh Dhamo

Problem 2:

Solve the PDE $pq + q^3 = 3pzq$

Solution

It is of the form

$$f(p, q, z) = pq + q^3 - 3pzq = 0$$
 (33)

Put
$$p = aq$$
 in (33) then $aq^2 + q^3 = 3aq^2z$
 $\Rightarrow q^2(a+q) = 3aq^2z$
 $\Rightarrow (a+q) = 3az$
 $q = 3az - a = a(3z - 1)$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 2 Continue...

Using value of q in
$$p = aq$$

$$p = a^{2}(3z - 1)$$
Consider, $p \ dx + q \ dy = dz$

$$a^{2}(3z - 1) \ dx + a(3z - 1) \ dy = dz$$

$$a^{2}dx + ady = \frac{dz}{3z - 1}$$
Integrating we get,
$$a^{2}x + ay = \frac{\ln(3z - 1)}{3} + b$$

$$a^{2}x + ay = \frac{\ln(3z - 1)}{3} + b$$
This is Required Solution

Late. Shivlal

Dhamone
and

Shri. V. G. Pa

Subject Teach

Problem 3:

Find the complete integral of $z^2(p^2z^2+q^2)=1$

Solution

It is of the form

f(p, q, z) =
$$z^2(p^2z^2 + q^2) - 1 = 0$$

Put $p = aq$ in (34) then $z^2(a^2q^2z^2 + q^2) = 1$

$$\implies z^{2}q^{2}(a^{2}z^{2}+1) = 1 \implies q^{2} = \frac{1}{z^{2}(a^{2}z^{2}+1)}$$

$$q = \frac{1}{z^{2}\sqrt{a^{2}z^{2}+1}}$$

(34)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 3 Continue...

Using value of q in
$$p = aq$$

$$p = \frac{1}{z\sqrt{a^2z^2 + 1}}$$
Consider, $p \ dx + q \ dy = dz$

$$\frac{a}{z\sqrt{a^2z^2 + 1}} \ dx + \frac{1}{z\sqrt{a^2z^2 + 1}} \ dy = dz$$

$$adx + dy = z\sqrt{1 + a^2z^2}dz$$
Integrating we get,
$$ax + y = \int z\sqrt{1 + a^2z^2}dz + b$$

Solution of Problem 3 Continue...

For integration, we use substitution method

Put
$$1 + a^2 z^2 = t$$

 $\Rightarrow 2a^2 z dz = dt$
 $\Rightarrow z dz = \frac{dt}{2a^2}$
 $ax + y - b = \int \sqrt{t} \frac{dt}{2a^2}$
 $ax + y - b = \frac{1}{2a^2} \frac{t^{\frac{3}{2}}}{\frac{3}{2}}$
 $3a^2(ax + y - b) = (a^2 z^2 + 1)^{\frac{3}{2}}$
This is Poquired Solution

This is Required Solution.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat Saheb

Subject Teache Santosh Dhamo

Problem 4:

Find the complete integral of $q^2 = z^2 p^2 (1 - p^2)$

Solution

It is of the form

$$f(p, q, z) = q^2 - z^2 p^2 (1 - p^2) = 0$$
 (35)

Put
$$p = aq$$
 in (34) then $q^2 = z^2 a^2 q^2 (1 - a^2 q^2)$
 $\implies 1 - a^2 q^2 = \frac{1}{a^2 z^2} \implies 1 - \frac{1}{a^2 z^2} = a^2 q^2$
 $\implies \frac{a^2 z^2 - 1}{a^2 z^2} = a^2 q^2$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

$$\therefore q^2 = \frac{a^2z^2 - 1}{a^4z^2}$$

$$q = \frac{\sqrt{z^2a^2 - 1}}{a^2z}$$
Using value of q in $p = aq$

$$p = \frac{a\sqrt{z^2a^2 - 1}}{a^2z}$$

$$p = \frac{\sqrt{z^2a^2 - 1}}{az}$$
Consider, $p \ dx + q \ dy = dz$

$$\frac{\sqrt{z^2a^2 - 1}}{az} \ dx + \frac{\sqrt{z^2a^2 - 1}}{a^2z} \ dy = dz$$

$$adx + dy = \frac{a^2z}{\sqrt{z^2a^2 - 1}} dz$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 4 Continue...

Integrating we get,

$$ax + y = \int \frac{a^2z}{\sqrt{z^2a^2 - 1}} dz + b$$

For integration, we use substitution method $Put \ a^2z^2 - 1 = t$

$$\implies$$
 2a²zdz = dt \implies a²zdz = $\frac{dt}{2}$

$$ax + y = \int \sqrt{t} \frac{dt}{2\sqrt{t}} + b$$

$$ax + y = \frac{2\sqrt{t}}{2}$$

$$ax + y = \sqrt{a^2z^2 - 1} + b$$

This is Required Solution.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teache Santosh Dhamo

Type 3: Separable Form

Type 3: Separable Form

The partial differential equation is said to be separable if it can be written in the form

$$f(x, p) = g(y, q)$$
 (36)

Let
$$F = f(x, p) - g(y, q) = 0$$

$$\frac{\partial F}{\partial x} = F_x = f_x$$

$$\frac{\partial F}{\partial y} = F_y = -g_x$$

Type 3: Separable Form continue...

$$\frac{\partial F}{\partial z} = F_z = O$$

$$\frac{\partial F}{\partial p} = F_p = f_p$$

$$\frac{\partial F}{\partial q} = F_q = -g_q$$

Charpit's Auxiliary equation is,
$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{-dp}{f_x + pf_z} = \frac{-dq}{f_y + qf_z}$$

$$\frac{dx}{f_p} = \frac{dy}{-g_q} = \frac{dz}{pf_p - qg_q} = \frac{-dp}{f_x} = \frac{-dq}{-g_y}$$

My Inspiration
Late. Shivlal
Dhamone
and
Shri. V. G. Pat

Subject Teacher Santosh Dhamon

Type 3: Separable Form Continue ...

Consider,
$$\frac{dx}{f_p} = \frac{-dp}{f_x}$$

 $\therefore f_x dx + f_p dp = 0$
 $\therefore d[f(x, p)] = 0$
Integrating we get,
 $f(x, p) = a$
Similarly using this in (36)
 $g(y, q) = a$

obtain expression for p and q from above two equations using values of p and q in $p \, dx + q \, dy = dz$ Integrating we get required solution.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamor

Problem 1:

Find the complete integral of $p^2 + q^2 = x + y$

Solution

Given equation is $p^{2} + q^{2} = x + y$ $p^{2} - x = y - q^{2}$ It is of the form f(x, p) = g(y, q)Let $f(x, p) = p^{2} - x = a$ $p^{2} = a + x$ $p = \sqrt{x + a}$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 1 Continue...

Similarly,
$$g(y, q) = y - q^2 = a$$

$$\therefore q^2 = y - a$$

$$q = \sqrt{y - a}$$
Consider, $p \ dx + q \ dy = dz$

$$\sqrt{x + a} \ dx + \sqrt{y - a} \ dy = dz$$

$$(x + a)^{\frac{1}{2}} dx + (y - a)^{\frac{1}{2}} dy = dz$$
Integrating we get,
$$\frac{(x + a)^{\frac{3}{2}}}{\frac{3}{2}} + \frac{(y - a)^{\frac{3}{2}}}{\frac{3}{2}} = z + b$$

$$(x + a)^{\frac{3}{2}} + (y - a)^{\frac{3}{2}} = \frac{3}{2}(z + b)$$
This is required solution.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Problem 2:

Find the complete integral of $p^2y(1+x^2)=qx^2$

Solution

Given equation is $p^2y(1+x^2) = qx^2$ $\therefore p^2\left(\frac{1+x^2}{x^2}\right) = \frac{q}{y}$ It is of the form f(x,p) = g(y,q)Let $f(x,p) = p^2\left(\frac{1+x^2}{x^2}\right) = a$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil Saheb

Subject Teacher Santosh Dhamon

Solution of Problem 2 Continue...

$$\therefore p^{2} = a \left(\frac{x^{2}}{1 + x^{2}}\right)$$

$$p = x \sqrt{\frac{a}{1 + x^{2}}}$$
Similarly, $g(y, q) = \frac{q}{y} = a$

$$q = ay$$
Consider, $p \ dx + q \ dy = dz$

$$\sqrt{\frac{a}{1 + x^{2}}} \ xdx + ay \ dy = dz$$

$$\sqrt{a} \frac{xdx}{\sqrt{1 + x^{2}}} + aydy = dz$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati Saheb

Subject Teacher Santosh Dhamon

Solution of Problem 2 Continue...

Integrating we get,

$$\sqrt{a}\sqrt{1+x^2} + a\frac{y^2}{2} = z + b$$
$$2\sqrt{a}\sqrt{1+x^2} + ay^2 = 2z + b$$

This is required solution.

My Inspiration
Late. Shivlal
Dhamone
and

Subject Teach

Type 4: Claraut's Equation:

Type 4: Claraut's Equation:

The partial differential equation is of the form z = px + qy + f(p, q) Where x and y are independent and z is dependent variable called as Claraut's Equation.

Now let
$$F = px + qy + f(x, p) - z = 0$$

$$\frac{\partial F}{\partial x} = F_x = p$$

$$\frac{\partial F}{\partial y} = F_y = q$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Type 4: Claraut's Equation continue...

$$\frac{\partial F}{\partial z} = F_z = -1$$

$$\frac{\partial F}{\partial p} = F_p = x + f_p$$

$$\frac{\partial F}{\partial q} = F_q = y + f_q$$

Charpit's Auxiliary equation is,

$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{p f_p + q f_q} = \frac{-dp}{f_x + p f_z} = \frac{-dq}{f_y + q f_z}$$

$$\frac{dx}{x + f_p} = \frac{dy}{y + f_q} = \frac{dz}{xp + p f_p + yq + q f_q} = \frac{-dp}{p - p} = \frac{-dq}{q - q}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Type 4: Claraut's Equation continue...

Consider, Each Ratio
$$=\frac{dp}{0}$$
 $\therefore dp = 0$

Integrating we get,

 $p = a$

Now Consider, Each Ratio $=\frac{dq}{0}$
 $\therefore dq = 0$

Integrating we get,

 $q = b$

using values of p and q in $z = px + qy + f(p, q)$
 $z = ax + by + f(a, b)$

Integrating we get required solution.

Type 4: Claraut's Equation:

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat Saheb

Subject Teache Santosh Dhamor

Problem 1:

Find the complete integral of (p+q)(z-px-qy)=1

Solution

Given equation is $z - px - qy = \frac{1}{p+q}$ $z = px + qy + \frac{1}{p+q}$ It is of the Claraut's Equation form
Hence its solution is, $z = ax + by + \frac{1}{a+b}$ where a and b are constants.

Jacobi's Method

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teache Santosh Dhamor

Jacobi's Auxiliary Equation

Show that the Jacobi's Auxiliary Equation is $\frac{dx_1}{-f_{p_1}} = \frac{dx_2}{-f_{p_2}} = \frac{dx_3}{-f_{p_3}} = \frac{dp_1}{f_{x_1}} = \frac{dp_2}{f_{x_2}} = \frac{dp_3}{f_{x_3}}$

Proof

This method is used for solving first order partial differential equation involving 3 or more independent variables.

Let

$$f(x_1, x_2, x_3, p_1, p_2, p_3) = 0 (37)$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamo

Proof of Jacobi's Auxiliary Equation...

be first order partial differential equation where z is function of x_1 , x_2 and x_3 and,

$$p_1 = \frac{\partial z}{\partial x_1}, \quad p_2 = \frac{\partial z}{\partial x_2}, \quad p_3 = \frac{\partial z}{\partial x_3}$$
 such that

$$p_1 dx_1 + p_2 dx_2 + p_3 dx_3 = dz$$
 (38)

The Jacobi's method is same is same as that of Charpit's method. The main thing of Jacobi's method is to obtain two additional equations.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Proof of Jacobi's Auxiliary Equation...

$$F_1(x_1, x_2, x_3, p_1, p_2, p_3) = a_1$$
 (39)

and

$$F_2(x_1, x_2, x_3, p_1, p_2, p_3) = a_2$$
 (40)

where a_1 and a_2 are arbitrary constants. We find p_1, p_2, p_3 from (37), (39) and (40) such that equation (38) will be integrable.

My Inspiration
Late. Shivlal
Dhamone
and
Shri. V. G. Pati

Subject Teache

Proof of Jacobi's Auxiliary Equation...

Differentiate (37) and (39) w.r.t. x_1

$$\frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial p_1} \cdot \frac{\partial p_1}{\partial x_1} + \frac{\partial f}{\partial p_2} \cdot \frac{\partial p_2}{\partial x_1} + \frac{\partial f}{\partial p_3} \cdot \frac{\partial p_3}{\partial x_1} = 0$$
 (41)

Similarly,

$$\frac{\partial F_1}{\partial x_1} + \frac{\partial F_1}{\partial p_1} \cdot \frac{\partial p_1}{\partial x_1} + \frac{\partial F_1}{\partial p_2} \cdot \frac{\partial p_2}{\partial x_1} + \frac{\partial F_1}{\partial p_3} \cdot \frac{\partial p_3}{\partial x_1} = 0 \qquad (42)$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Proof of Jacobi's Auxiliary Equation...

Multiply (41) by
$$\frac{\partial F_1}{\partial p_1}$$
 and (42) by $\frac{\partial f}{\partial p_1}$ then take (41) - (42)

$$\left(\frac{\partial f}{\partial x_{1}}\frac{\partial F_{1}}{\partial p_{1}} - \frac{\partial F_{1}}{\partial x_{1}}\frac{\partial f}{\partial p_{1}}\right) + \left(\frac{\partial f}{\partial p_{2}}\frac{\partial F_{1}}{\partial p_{1}} - \frac{\partial F_{1}}{\partial p_{2}}\frac{\partial f}{\partial p_{1}}\right)\frac{\partial p_{2}}{\partial x_{1}} + \left(\frac{\partial f}{\partial p_{3}}\frac{\partial F_{1}}{\partial p_{1}} - \frac{\partial F_{1}}{\partial p_{3}}\frac{\partial f}{\partial p_{1}}\right)\frac{\partial p_{3}}{\partial x_{1}} = 0$$
(43)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Proof of Jacobi's Auxiliary Equation...

Similarly, Differentiate (37) and (39) w.r.t. x_2 Replace $x_1 = x_2$, $p_1 = p_2$, $p_3 = constant$

$$\left(\frac{\partial f}{\partial x_{2}}\frac{\partial F_{1}}{\partial p_{2}} - \frac{\partial F_{1}}{\partial x_{2}}\frac{\partial f}{\partial p_{2}}\right) + \left(\frac{\partial f}{\partial p_{1}}\frac{\partial F_{1}}{\partial p_{2}} - \frac{\partial F_{1}}{\partial p_{1}}\frac{\partial f}{\partial p_{2}}\right)\frac{\partial p_{1}}{\partial x_{2}} + \left(\frac{\partial f}{\partial p_{3}}\frac{\partial F_{1}}{\partial p_{2}} - \frac{\partial F_{1}}{\partial p_{3}}\frac{\partial f}{\partial p_{2}}\right)\frac{\partial p_{3}}{\partial x_{2}} = 0$$
(44)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teach Santosh Dham

Proof of Jacobi's Auxiliary Equation...

Similarly, Differentiate (37) and (39) w.r.t. x_3 Replace $x_1 = x_3$, $p_1 = p_3$, $p_2 = constant$

$$\left(\frac{\partial f}{\partial x_{3}}\frac{\partial F_{1}}{\partial p_{3}} - \frac{\partial F_{1}}{\partial x_{3}}\frac{\partial f}{\partial p_{3}}\right) + \left(\frac{\partial f}{\partial p_{2}}\frac{\partial F_{1}}{\partial p_{3}} - \frac{\partial F_{1}}{\partial p_{2}}\frac{\partial f}{\partial p_{3}}\right)\frac{\partial p_{2}}{\partial x_{3}} + \left(\frac{\partial f}{\partial p_{1}}\frac{\partial F_{1}}{\partial p_{3}} - \frac{\partial F_{1}}{\partial p_{1}}\frac{\partial f}{\partial p_{3}}\right)\frac{\partial p_{1}}{\partial x_{3}} = 0$$
(45)

Adding (43), (44) and (45) and using $\frac{\partial p_2}{\partial x_1} = \frac{\partial}{\partial x_1} \frac{\partial z}{\partial x_2} = \frac{\partial^2 z}{\partial x_1 \partial x_2} = \frac{\partial}{\partial x_2} \frac{\partial z}{\partial x_1} = \frac{\partial p_1}{\partial x_2}$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teache Santosh Dhamo

Proof of Jacobi's Auxiliary Equation...

using
$$\frac{\partial p_2}{\partial x_1} = \frac{\partial p_1}{\partial x_2}$$
, $\frac{\partial p_3}{\partial x_1} = \frac{\partial p_1}{\partial x_3}$ and $\frac{\partial p_3}{\partial x_2} = \frac{\partial p_2}{\partial x_3}$ we get,
$$\left(\frac{\partial f}{\partial x_1} \frac{\partial F_1}{\partial p_1} - \frac{\partial F_1}{\partial x_1} \frac{\partial f}{\partial p_1} \right) + \left(\frac{\partial f}{\partial x_2} \frac{\partial F_1}{\partial p_2} - \frac{\partial F_1}{\partial x_2} \frac{\partial f}{\partial p_2} \right) + \\ \left(\frac{\partial f}{\partial x_3} \frac{\partial F_1}{\partial p_3} - \frac{\partial F_1}{\partial x_3} \frac{\partial f}{\partial p_3} \right) = 0$$

$$\sum_{r=1}^{3} \left(\frac{\partial f}{\partial x_r} \frac{\partial F_1}{\partial p_r} - \frac{\partial F_1}{\partial x_r} \frac{\partial f}{\partial p_r} \right) = 0$$

Late. Shivlal
Dhamone
and
Shri. V. G. Patil

Subject Teache Santosh Dhamor

Proof of Jacobi's Auxiliary Equation...

It's Auxiliary equation is,

$$\frac{dx_1}{-f_{p_1}} = \frac{dx_2}{-f_{p_2}} = \frac{dx_3}{-f_{p_3}} = \frac{dp_1}{f_{x_1}} = \frac{dp_2}{f_{x_2}} = \frac{dp_3}{f_{x_3}}$$

This relation is known as Jacobi's Auxiliary Equation. Similarly from (37) and (40) we get,

$$\sum_{r=1}^{3} \left(\frac{\partial f}{\partial x_r} \frac{\partial F_2}{\partial p_r} - \frac{\partial F_2}{\partial x_r} \frac{\partial f}{\partial p_r} \right) = 0$$

After finding F-1= a_1 and $F_2 = a_2$ solving the equations

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati Saheb

Subject Teacher Santosh Dhamo

Problem 1:

Solve the PDE $p_1^3 + p_2^2 + p_3 = 1$ by Jacobi's method

Solution

Let

$$f = p_1^3 + p_2^2 + p_3 - 1 = 0$$

$$\frac{\partial f}{\partial x_1} = f_{x_1} = 0$$

$$\frac{\partial f}{\partial x_2} = f_{x_2} = 0$$
(46)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 1 Continue...

$$\frac{\partial f}{\partial x_3} = f_{x_3} = 0$$

$$\frac{\partial f}{\partial p_1} = f_{p_1} = 3p_1^2$$

$$\frac{\partial f}{\partial p_2} = f_{p_2} = 2p_2$$

$$\frac{\partial f}{\partial p_3} = f_{p_3} = -1$$

Jacobi's Auxiliary equation is,

$$\frac{dx_1}{-f_{p_1}} = \frac{dx_2}{-f_{p_2}} = \frac{dx_3}{-f_{p_3}} = \frac{dp_1}{f_{x_1}} = \frac{dp_2}{f_{x_2}} = \frac{dp_3}{f_{x_3}}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat Saheb

Subject Teacher Santosh Dhamon

Solution of Problem 1 Continue...

$$\frac{dx_1}{-3p_1^2} = \frac{dx_2}{2p_2} = \frac{dx_3}{-1} = \frac{dp_1}{0} = \frac{dp_2}{0} = \frac{dp_3}{0}$$

$$EachRatio = \frac{dp_1}{0} \implies dp_1 = 0$$
 Integrating,
$$p_1 = a..... \text{ where a is constant}$$
 Similarly,
$$EachRatio = \frac{dp_2}{0} \implies dp_2 = 0$$
 Integrating,
$$p_2 = b..... \text{ where b is constant}$$
 Using
$$p_1 = a \text{ and } p_2 = b \text{ in equation (46)}$$

$$a^3 + b^2 + p_3 = 1 \implies p_3 = 1 - a^3 - b^2$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 1 Continue...

Using the values of p_1 , p_2 and p_3 in $p_1 dx_1 + p_2 dx_2 + p_3 dx_3 = dz$ Consider, $p_1 dx_1 + p_2 dx_2 + p_3 dx_3 = dz$ \therefore a $dx_1 + b dx_2 + (1 - a^3 - b^2) dx_3 = dz$ Integrating we get, $a x_1 + b x_2 + (1 - a^3 - b^2) x_3 = z + c$ Required Solution.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teach Santosh Dhame

Problem 2:

Solve the PDE $2 p_1 x_1 x_3 + 3 p_2 x_3^2 + p_2^2 p_3 = 0$ by Jacobi's method

Solution

Let

$$f = 2 p_1 x_1 x_3 + 3 p_2 x_3^2 + p_2^2 p_3 = 0$$

$$\frac{\partial f}{\partial x_1} = f_{x_1} = 2 p_1 x_3$$
(47)

$$\frac{\partial f}{\partial x_1} = f_{x_1} = 2 p_1 x_3$$
$$\frac{\partial f}{\partial x_2} = f_{x_2} = 0$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 2 Continue...

$$\frac{\partial f}{\partial x_3} = f_{x_3} = 2 p_1 x_1 + 6 p_2 x_3$$

$$\frac{\partial f}{\partial p_1} = f_{p_1} = 2 x_1 x_3$$

$$\frac{\partial f}{\partial p_2} = f_{p_2} = 3 x_3^2 + 2 p_2 p_3$$

$$\frac{\partial f}{\partial p_3} = f_{p_3} = p_2^2$$

Jacobi's Auxiliary equation is,

$$\frac{dx_1}{-f_{p_1}} = \frac{dx_2}{-f_{p_2}} = \frac{dx_3}{-f_{p_3}} = \frac{dp_1}{f_{x_1}} = \frac{dp_2}{f_{x_2}} = \frac{dp_3}{f_{x_3}}$$

My Inspiration
Late. Shivlal
Dhamone
and
Shri. V. G. Par

Subject Teacher Santosh Dhamon

Solution of Problem 2 Continue...

$$\frac{dx_1}{-(2x_1x_3)} = \frac{dx_2}{-(3x_3^2 + 2\rho_2\rho_3)} = \frac{dx_3}{-\rho_2^2} = \frac{d\rho_1}{2\rho_1x_3} = \frac{d\rho_2}{0} = \frac{d\rho_3}{2\rho_1x_1 + 6\rho_2x_3}$$

EachRatio =
$$\frac{dp_2}{0} \implies dp_2 = 0$$

Integrating,

 $p_2 = a$where a is constant

Similarly, Consider,

$$\frac{dx_1}{-(2x_1x_3)} = \frac{dp_1}{2p_1x_3}$$

$$\frac{dx_1}{-x_1} = \frac{dp_1}{p_1}$$
Integrating,
$$-\ln x_1 = \ln p_1 - \ln b$$

My Inspiration Late. Shivlal Dhamone and

Subject Teache

Solution of Problem 2 Continue...

In
$$x_1 + \ln p_1 = \ln b$$

In $x_1p_1 = \ln b \implies x_1p_1 = b$
 $p_1 = \frac{b}{x_1}$where b is constant
Using $p_1 = \frac{b}{x_1}$ and $p_2 = a$ in equation (47)
 $2\frac{b}{x_1}x_1x_3 + 3ax_3^2 + a^2p_3 = 0$
 $a^2p_3 = -2bx_3 - 3ax_3^2$
 $p_3 = -\frac{1}{a^2}(2bx_3 + 3ax_3^2)$

Solution of Problem 2 Continue...

Using the values of p_1 , p_2 and p_3 in $p_1 dx_1 + p_2 dx_2 + p_3 dx_3 = dz$ Consider.

$$p_1 dx_1 + p_2 dx_2 + p_3 dx_3 = dz$$

$$\therefore \frac{b}{x_1} dx_1 + a dx_2 - \frac{1}{a^2} (2bx_3 + 3ax_3^2) dx_3 = dz$$

Integrating we get,

$$b \ln x_1 + a x_2 - \frac{1}{a^2} \left(2 b \frac{x_3^2}{2} + 3 a \frac{x_3^3}{3} \right) = z + c$$

$$b \ln x_1 + a x_2 - \frac{b}{a^2} x_3^2 - \frac{x_3^3}{a} = z + c$$

Required Solution.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat Saheb

Subject Teache Santosh Dhamo

Problem 3:

Solve the PDE $p_1 x_1 + p_2 x_2 = p_3^2$ by Jacobi's method

Solution

Let

$$f = p_{1} x_{1} + p_{2} x_{2} - p_{3}^{2} = 0$$

$$\frac{\partial f}{\partial x_{1}} = f_{x_{1}} = p_{1}$$

$$\frac{\partial f}{\partial x_{2}} = f_{x_{2}} = p_{2}$$
(48)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 3 Continue...

em 3 Continue...
$$\frac{\partial f}{\partial x_3} = f_{x_3} = 0$$

$$\frac{\partial f}{\partial p_1} = f_{p_1} = x_1$$

$$\frac{\partial f}{\partial p_2} = f_{p_2} = x_2$$

$$\frac{\partial f}{\partial p_3} = f_{p_3} = -2p_3$$
This is A writing a greation.

Jacobi's Auxiliary equation is,

$$\frac{dx_1}{-f_{p_1}} = \frac{dx_2}{-f_{p_2}} = \frac{dx_3}{-f_{p_3}} = \frac{dp_1}{f_{x_1}} = \frac{dp_2}{f_{x_2}} = \frac{dp_3}{f_{x_3}}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamor

Solution of Problem 3 Continue...

$$\frac{dx_1}{-x_1} = \frac{dx_2}{-x_2} = \frac{dx_3}{-(-2p_3)} = \frac{dp_1}{p_1} = \frac{dp_2}{p_2} = \frac{dp_3}{0}$$

EachRatio =
$$\frac{dp_3}{0}$$
 \Longrightarrow dp₃ = 0
Integrating,
 $p_3 = a$where a is constant
Similarly, Consider,
 $\frac{dx_1}{-x_1} = \frac{dp_1}{p_1}$
Integrating,
 $-\ln x_1 = \ln p_1 - \ln b$

My Inspiration Late. Shivlal Dhamone and

Subject Teache

Solution of Problem 3 Continue...

$$\ln x_1 + \ln p_1 = \ln b$$

$$\ln x_1 p_1 = \ln b \implies x_1 p_1 = b$$

$$p_1 = \frac{b}{x_1} \dots \text{ where b is constant}$$
Using $p_1 = \frac{b}{x_1}$ and $p_3 = a$ in equation (48)
$$2 \frac{b}{x_1} x_1 + p_2 x_2 - a^2 = 0$$

$$p_2 x_2 = a^2 - b$$

$$p_2 = \frac{a^2 - b}{x_2}$$

My Inspiration Late. Shivlal Dhamone

Subject Teache

Solution of Problem 3 Continue...

Using the values of p_1 , p_2 and p_3 in p_1 $dx_1 + p_2$ $dx_2 + p_3$ $dx_3 = dz$ Consider.

$$p_1 dx_1 + p_2 dx_2 + p_3 dx_3 = dz$$

 $\therefore \frac{b}{x_1} dx_1 + \frac{a^2 - b}{x_2} dx_2 + adx_3 = dz$

Integrating we get,

$$b \ln x_1 + (a^2 - b) \ln x_2 + a x_3 = z + c$$

$$b \ln x_1 + (a^2 - b) \ln x_2 + a x_3 = z + c$$

Required Solution.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat Saheb

Subject Teache Santosh Dhamo

Problem 4:

Solve the PDE $p_1 p_2 p_3 = z^3 x_1 x_2 x_3$ by Jacobi's method

Solution

Let

$$p_1 p_2 p_3 = z^3 x_1 x_2 x_3$$
Dividing by z^3

$$\left(\frac{1}{z}p_1\right)\left(\frac{1}{z}p_2\right)\left(\frac{1}{z}p_3\right) = x_1 x_2 x_3$$
Put $u = \log z$
Differentiate w.r.t. x_1 , we get
$$\therefore \frac{\partial u}{\partial x_1} = \frac{1}{z} \frac{\partial z}{\partial x_1} = \frac{1}{z} p_1$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teacher Santosh Dhamon

Solution of Problem 4 Continue...

Take
$$P_1 = \frac{1}{z}p_1$$
, $P_2 = \frac{1}{z}p_2$, $P_3 = \frac{1}{z}p_3$
Equation becomes, $P_1 P_2 P_3 = x_1 x_2 x_3$

$$f = P_1 P_2 P_3 - x_1 x_2 x_3 = 0$$

$$\frac{\partial f}{\partial x_1} = f_{x_1} = -x_2 x_3,$$

$$\frac{\partial f}{\partial x_2} = f_{x_2} = -x_1 x_3,$$

$$\frac{\partial f}{\partial x_3} = f_{x_3} = -x_1 x_2;$$

(49)

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 4 Continue...

$$\frac{\partial f}{\partial P_1} = f_{P_1} = P_2 P_3$$

$$\frac{\partial f}{\partial P_2} = f_{P_2} = P_1 P_3$$

$$\frac{\partial f}{\partial P_3} = f_{P_3} = P_1 P_2$$

Jacobi's Auxiliary equation is,

$$\frac{dx_1}{-f_{P_1}} = \frac{dx_2}{-f_{P_2}} = \frac{dx_3}{-f_{P_3}} = \frac{dP_1}{f_{x_1}} = \frac{dP_2}{f_{x_2}} = \frac{dP_3}{f_{x_3}}$$

$$\frac{dx_1}{-P_2P_3} = \frac{dx_2}{-P_1P_3} = \frac{dx_3}{-P_1P_2} = \frac{dP_1}{-x_2x_3} = \frac{dP_2}{-x_1x_3} = \frac{dP_3}{-x_1x_2}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 4 Continue...

Consider

$$\frac{dx_1}{-P_2P_3} = \frac{dP_1}{-x_2x_3}$$

$$\therefore \frac{P_1dx_1}{P_1P_2P_3} = \frac{dP_1}{x_2x_3}$$

$$\therefore \frac{P_1dx_1}{x_1x_2x_3} = \frac{dP_1}{x_2x_3} \dots \text{ By Equation (49)}$$

$$\therefore \frac{dx_1}{x_1} = \frac{dP_1}{P_1}$$
Integrating,
$$\therefore \log x_1 = \log P_1 - \log a$$

$$\therefore \log x_1 + \log a = \log P_1$$

$$P_1 = ax_1 \dots \text{ where a is constant}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Patil

Subject Teacher Santosh Dhamon

Solution of Problem 4 Continue...

Similarly, Consider,

$$\frac{dx_2}{-P_1P_3} = \frac{dP_2}{-x_1x_3}$$

$$\therefore \frac{P_2dx_2}{P_1P_2P_3} = \frac{dP_2}{x_1x_3}$$

$$\therefore \frac{P_2dx_2}{x_1x_2x_3} = \frac{dP_2}{x_1x_3} \dots \text{ by equation (49)}$$

$$\therefore \frac{dx_2}{x_2} = \frac{dP_2}{P_2}$$
Integrating,
$$\therefore \log x_2 = \log P_2 - \log b$$

$$\therefore \log x_2 + \log b = \log P_2$$

$$P_2 = bx_2 \dots \text{ where b is constant}$$

Solution of Problem 4 Continue...

Using
$$P_1 = ax_1$$
 and $P_2 = bx_2$ in equation (49)
 \therefore a $x_1 b x_2 P_3 - x_1 x_2 x_3 = 0$
 \therefore a $x_1 b x_2 P_3 = x_1 x_2 x_3$
 \therefore P₃ = $\frac{x_3}{ab}$
 $P_3 = \frac{x_3}{ab}$

$$P_3 = \frac{x_3}{x_3}$$

Using the values of p_1 , p_2 and p_3 in in

$$P_1 dx_1 + P_2 dx_2 + P_3 dx_3 = dz$$

 \therefore a $x_1 dx_1 + bx_2 dx_2 + \frac{x_3}{ab} dx_3 = dz$

Integrating we get,

$$\frac{ax_1^2}{2} + \frac{bx_2^2}{2} + \frac{x_3^2}{2ab}z + c$$

$$a^2bx_1^2 + ab^2x_2^2 + x_3^2 = 2abz + c...$$
 Required Solution.

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pat

Subject Teach

Problem 5:

Solve the PDE $p^2x + q^2y = z$ by Jacobi's method

Solution

Jacobi's method is used for solving first order partial differential equation involving 3 or more independent variables. Here x and y are independent and z is dependent variable. So we consider z as independent variable

if and only if
$$u(x, y, z) = 0$$

 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial x} = 0 \implies \frac{\partial u}{\partial x} + \frac{\partial u}{\partial z} p = 0$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 5 Continue...

Let

$$u_1 = \frac{\partial u}{\partial x}, \quad u_2 = \frac{\partial u}{\partial y}, \quad u_3 = \frac{\partial u}{\partial z}$$

$$\therefore \quad u_1 + u_3 \quad p = 0$$

$$\therefore \quad p = -\frac{u_1}{u_3}$$
Similarly, $q = -\frac{u_2}{u_3}$
Using this in (1)
$$\frac{u_1^2}{u_3^2} x + \frac{u_2^2}{u_3^2} y = z$$

$$\therefore \quad u_1^2 x + u_2^2 y = u_3^2 z$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamor

Let

$$f = u_1^2 x + u_2^2 v - u_3^2 z = 0$$

$$\frac{\partial f}{\partial x} = f_x = u_1^2,$$

$$\frac{\partial f}{\partial y} = f_y = u_2^2,$$

$$\frac{\partial f}{\partial z} = f_z = -u_3^2;$$

$$\frac{\partial f}{\partial u_1} = f_{u_1} = 2u_1 x$$

$$\frac{\partial f}{\partial u_2} = f_{u_2} = 2u_2 y \text{ and } \frac{\partial f}{\partial u_3} = f_{u_3} = -2u_3 z$$

(50)

My Inspiration Late. Shivlal Dhamone and

Subject Teacher Santosh Dhamon

Solution of Problem 5 Continue...

Jacobi's Auxiliary equation is,

$$\frac{dx}{-f_{u_1}} = \frac{dy}{-f_{u_2}} = \frac{dz}{-f_{u_3}} = \frac{du_1}{f_x} = \frac{du_2}{f_y} = \frac{du_3}{f_z}$$

$$\frac{dx}{-2u_1 x} = \frac{dy}{-2u_2 y} = \frac{dz}{-2u_3 z} = \frac{du_1}{u_1^2} = \frac{du_2}{u_2^2} = \frac{du_3}{-u_3^2}$$

Consider

$$\frac{dx}{-2u_1 x} = \frac{du_1}{u_1^2}$$
$$\frac{dx}{-2 x} = \frac{du_1}{u_1}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 5 Continue...

Integrating,

$$\therefore -\frac{1}{2} \log x = \log u_1 - \log a$$

$$\therefore \log u_1^2 + \log x = \log a$$

$$\therefore \log u_1^2 x = \log a$$

$$\therefore u_1^2 x = a$$

$$u_1 = \sqrt{\frac{a}{x}} \dots \text{ where a is constant}$$
Similarly, Consider,

$$\frac{dy}{-2u_2 y} = \frac{du_2}{u_2^2}$$

$$\frac{dy}{-2 y} = \frac{du_2}{u_2}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 5 Continue...

Integrating,

$$\therefore -\frac{1}{2} \log y = \log u_2 - \log b$$

$$\therefore \log u_2^2 + \log y = \log b$$

$$\therefore \log u_2^2 y = \log b \therefore u_2^2 y = b$$

$$u_2 = \sqrt{\frac{b}{y}} \dots \text{ where b is constant}$$
Using $u_1 = \sqrt{\frac{a}{x}} \text{ and } u_2 = \sqrt{\frac{b}{y}} \text{ in equation (50)}$

$$\therefore \frac{a}{x} x + \frac{b}{y} y - u_3^2 z = 0 \implies \therefore u_3^2 z = a + b$$

$$u_3 = \sqrt{\frac{a+b}{z}}$$

My Inspiration Late. Shivlal Dhamone and Shri. V. G. Pati

Subject Teacher Santosh Dhamon

Solution of Problem 5 Continue...

Using the values of u_1, u_2 and u_3 in in $u_1 dx + u_2 dy + u_3 dz = du$ $\therefore \sqrt{\frac{a}{x}} dx + \sqrt{\frac{b}{y}} dy + \sqrt{\frac{a+b}{z}} dz = du$ $\therefore \sqrt{a} \frac{dx}{\sqrt{x}} + \sqrt{b} \frac{dy}{\sqrt{y}} + \sqrt{a+b} \frac{dz}{\sqrt{z}} = du$ Integrating we get, $2\sqrt{ax} + 2\sqrt{by} + 2\sqrt{(a+b)z} = u+c$ But u(x, y, z) = 0 $\sqrt{ax} + \sqrt{by} + \sqrt{(a+b)z} = c$ Required Solution.