Paper / Subject Code: 24285 / Mathematics: Multivariable Calculus II (R. 2022)

4. Nov. 20 22

Time: 2.5 Hours

Total Marks: 75

N. B. 1) All questions are compulsory. 2) Use of a simple calculator is allowed. 3) Figures to the right indicate marks. Q. 1 A) Attempt any one from the following. If U is an open set in \mathbb{R}^2 containing the rectangle $[a,b] \times [c,d]$ and $f: U \to \mathbb{R}$ is continuously differentiable function then show that g'(x) = $\int_{c}^{d} \frac{\partial f}{\partial x}(x, y) dy \text{ where } g(x) = \int_{c}^{d} f(x, y) dy, \ \forall x \in [a, b].$ ii) State and prove the Fubini's Theorem for a rectangular domain in \mathbb{R}^2 . B Attempt any two from the following. Prove that every continuous function defined on a rectangular domain R in i) \mathbb{R}^2 is integrable. ii) Using cylindrical co-ordinates find the volume of the solid region S in R3 which is bounded by the paraboloid $x^2 + y^2 = 10 - z$ and the plane z = 1. Evaluate $\iiint_S (x^2 + y^2 + z^2)^{\frac{1}{2}} dx dy dz$ where S is region in \mathbb{R}^3 bounded by two co-centric spheres with centre at the orgin and radii 1 and 3. Q.2 Attempt any one from the following. Define a parameterized curve in \mathbb{R}^n . When do you say that two parameterized curves in \mathbb{R}^n are equivalent? Show that two equivalent parameterized curves have essentially the same image set. Show that the converse of this is not true by considering the curves $\alpha(t) = (\cos t, \sin t); 0 \le t \le 2\pi \text{ and } \beta(t) = (\sin t, \cos t); 0 \le t \le 2\pi.$ ii) State and prove the Green's theorem for a rectangle. B (12)Attempt any two from the following. i) Evaluate $\int_C 2xydx + x^2zdy + x^2ydz$, where C is a straight line joining (1, 1,1) to (1, 2,4). Calculate the work done in the moving the particle from the point P =ii) (2,-1) to the point Q=(-4,2) for the force field $F(x,y)=(x^2+4xy+$ $4y^2$, $2x^2 + 8xy + 8y^2$), showing first that it is conservative. iii) Use Green's theorem to evaluate $\oint 4x^2 y dx + 2y dy$ over closed curve C, where C is the boundary of the triangle with vertices (0,0),(1,2) and (0,2). Attempt any one from the following. O.3. A) i). State and prove the Gauss Divergence theorem for a cube. State and Prove the Stoke's theorem. ii) (12)B

Attempt any two from the following.

Using Stoke's Theorem evaluate the line integral $\oint_C xydx + x^2ydy$ taken

around the square C with vertices (1,0), (-1,0), (0,1) and (0,-1).

Paper / Subject Code: 24285 / Mathematics: Multivariable Calculus II (R 2022)

- Evaluate the surface integrals of vector field F(x, y, z) = (x, y, z) and S is the piece of the cylinder with parameterization $r(x, y) = (\cos x, \sin x, y)$ where $(x, y) \in \left[0, \frac{\pi}{2}\right] \times [0, 1]$.
- Let $S = \bar{r}(T)$ be a smooth parametric surface in uv plane. Define area of S. If S is represented by an equation z = f(x, y) then show that area of S is given by

$$\iint\limits_{T} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \ dxdy$$

where T is projection of S on xy -plane.

Q. 4 A Attempt any three questions from the following.

i) Evaluate $\iint_S dx dy$ where S is the region bounded by the curves xy = 4, xy = 8, $xy^3 = 5$, $xy^3 = 15$.

ii) Evaluate $\iiint_S e^{(x^2+y^2+z^2)^{3/2}} dxdydz$ where S is the unit sphere centered at origin by using spherical coordinates.

iii) Evaluate line integral of scalar field f(x, y, z) = x + y + z along the line segment from (1, 2, 3) to (0, -1, 1).

iv) Calculate the work done in the moving the particle from the point P to the point Q by the force field $F(x,y) = (y(e^{xy} + 1), x(e^{xy} + 1))$; showing first that it is conservative where P(1,0), Q(1,1).

v) If S and C satisfy hypothesis of Stoke's Theorem and f, g have continuous second order partial derivatives. Prove with usual notations
i) $\int_C (f \nabla g) \, d\mathbf{r} = \iint_S (\nabla f \times \nabla g) \cdot \bar{\mathbf{n}} dS$ ii) $\int_C (f \nabla g) + g \nabla f$. $d\mathbf{r} = 0$.

vi) Prove the following identities, assuming S and V satisfy the conditions of the Divergence Theorem and components of F have continuous partial derivatives, \bar{n} is unit outward normal.

i) $|V| = \frac{1}{3} \iint_S \vec{r}$. $\vec{n} dS$ where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and |V| = volume of V. ii) $\iint_S \text{curl } F \cdot \vec{n} dS = 0$.

Paper / Subject Code: 24286 / Mathematics : Group Theory (R 2022)

5- Nov- 2022 10.30 AM to 1.00 PM.

Time: $2\frac{1}{2}$ hours

Total Marks:75

Instructions:1) All questions are compulsory.

2) Figures to right indicate marks for respective sub questions.

.1	A	Answer any ONE	
	i) .	Let G be a group and H be a non-empty subset of G. Prove that H is a subgroup of	08
		G if and only if $ab^{-1} \in H$ for all $a, b \in H$	
	ii)	Let G be a group, $a, b \in G$ such that $o(a) = m, o(b) = n$ and $ab = ba$. If	08
		gcd(m, n) = 1 then prove that $o(ab) = mn$.	
	В	Answer any TWO	
	i)	Let H and K be subgroups of a group G then prove that $H \cup K$ is also a subgroup of G if and only if either $H \subseteq K$ or $K \subseteq H$.	06
	ii)	Let G be a group. Prove that $\phi: G \to G$ defined as $\phi(x) = x^{-1}$ is homomorphism if and only if G is an abelian	06
	iii)	Let G be a group and $a \in G$ with $o(a) = n$ then, prove that $a^m = e$ if and only if	06
		n m.	
Q	2 A	Answer any ONE	
	i)	If H_1 , H_2 are normal subgroups of groups G_1 , G_2 respectively, then prove that $H_1 \times$	08
		H_2 is a normal subgroup of $G_1 \times G_2$. Further prove that $\frac{G_1 \times G_2}{H_1 \times H_2}$ is isomorphic to	
		$\frac{G_1}{H_1} \times \frac{G_2}{H_2}$	00
	ii)		08
	В	Group Homomorphism). Answer any TWO	
	i)		06
	1)	The kernel of f is a normal subgroup of G and image of f is a subgroup of G' .	
	ii		06
		where $\{\pm 1\}$ is a group under multiplication. Further show that A_n is normal in S_n .	
	iii		06
		H is a normal subgroup of G .	
Q	.3 A	Answer any ONE	08
	i)	Define cyclic subgroup and normal subgroup. If a cyclic subgroup H of a group G is	00
		normal in G, show that every subgroup of H is normal in G.	08
	ii)	Let G be a finite cyclic group of order n . Show that for every positive divisor d of	00
		n, there exists a unique subgroup of order d .	
	В	Answer any TWO	06
	i)	Let G be a cyclic group of order 18 generated by a . Find all the generators of G .	00
		Further, find all the elements of order 9 in G.Clearly state the results used.	

Paper / Subject Code: 24286 / Mathematics : Group Theory (R 2022)

	::>	Show that an infinite cyclic group generated by a has exactly two generators a and	06
	ii)		06
	iii)	Show that a group of prime order is cyclic. Is converse true? Justify your answer.	
Q.4		Answer any THREE	05
	i)	Let G be the group of functions from \mathbb{R} to \mathbb{R}^* under point wise multiplication. Let $H = \{ f \in G \mid f(1) = 1 \}$. Prove that H is a subgroup of G.	
	:::\	$1 - \{j \in G \mid j(1) = 1\}. \text{ Flowe that it is a subgroup of } 0.$	05
	ii)	Let G be a group and $a \in G$. If $o(a) = mn$ then show that $o(a^m) = n$.	05
	iii)	List all left cosets of the subgroup $H = \{\overline{1}, \overline{11}\}$ of $U(30)$, the group of residue	
		classes under multiplication modulo 30.	05
	iv)	Show that if H , N are subgroups of a group G and N is a normal subgroup of G , then prove that $H \cap N$ is normal in H . Give an example to show that $H \cap N$ need not be	05
		normal in G.	05
	v)	Find the number of elements in the cyclic subgroup of the group \mathbb{C}^* (of non-zero complex numbers) generated by $1+i$	05
		Let μ_5 denotes the multiplicative group of the fifth roots of unity in C. Determine	05
	vi)		
		the order of the cyclic subgroup of μ_5 generated by e^{-5}	
		Let U be a given and a S & with ofor	

07 NOV 2022 10.30 am to 1.00 pm

Duration 2 Hrs

REVISED COURSE

Marks: 75

N.B. : (1) All questions are compulsory.

(2) Figures to the right indicate marks.

1. (a) Attempt ANY ONE from the following:

- (i) Show that for a subset F of a metric space (X,d), the following statements are equivalent:
 - (I) F is closed
 - F contains all its limit points.
- (ii) Show that in a metric space (X, d)
 - (I) an arbitrary union of open sets is an open set.
 - (II) a finite intersection of open sets is an open set.

(b) Attempt ANY TWO from the following:

- (i) Define an open ball B(x,r) in a metric space (X,d) and show that every open ball is an open set.
- (ii) Let (X,d) be a metric space and $d_1: X \times X \to \mathbb{R}$ be a metric defined as $d_1(x,y) =$ $\forall x, y \in X$. Show that d and d_1 are equivalent metrics on X.
- (iii) Show that in a discrete metric space (X, d) every subset is both open and closed.
- 2. (a) Attempt ANY ONE from the following:

(8)

- (i) State and prove Density Theorem.
- (ii) Let (X,d) be a metric space and A be a subset of X. Show that $p \in X$ is a limit point of A if and only if there is a sequence of distinct points in A converging to p.
- (b) Attempt ANY TWO from the following:

(12)

- (i) Prove that a subspace (Y, d) of complete metric space (X, d) is complete if and only if Y is closed.
- (ii) If $f:[a,b] \longrightarrow \mathbb{R}$ is a continuous function such that f takes only rational values then show that f is a constant function.
- (iii) Show that $S = \{x \in \mathbb{Q} : 3 < x^2 < 5\}$ is both open and closed in the subspace \mathbb{Q} of \mathbb{R} with usual metric.
- 3. (a) Attempt ANY ONE from the following:

(8)

- (i) Consider the metric space (\mathbb{R}, d) where d is usual metric, Prove that if $a, b \in \mathbb{R}$ where a < b, then Prove that [a, b] satisfies Heine-Borel property.
- (ii) Define compact subset of a metric space. Show that a compact subset of a metric space is closed. Give an example to show that every closed subset need not be compact.
- (b) Attempt ANY TWO from the following:

(12)

(i) Consider the metric space $(C[a, b], || \|_{\infty})$, where $||f||_{\infty} = \sup\{|f(t)| : t \in [a, b]\}$. Show that the open cover $\{B(0,n)\}_{n\in\mathbb{N}}$ of C[a,b] has no finite subcover. (0 being the constant zero function).

- (ii) Determine if $D=\{(x,y)\in\mathbb{R}^2:|y|\leq 2\}$ in (\mathbb{R}^2,d) where d is Euclidean distance, is compact in \mathbb{R}^2 .
- (iii) If A, B are compact subsets of any metric space, prove that $A \cup B$ is also compact.
- 4. Attempt ANY THREE from the following:

(15)

- (a) Define an open set in a metric space (X, d). Let $A \subseteq X$. Show that A is open if and only if $A = A^{\circ}$ (Interior of A).
- (b) Let d_1, d_2 be metrics on a non-empty set X. Define $d: X \times X \longrightarrow \mathbb{R}$ as $d(x, y) = \max\{d_1(x, y), d_2(x, y)\}$. Show that d is a metric on X.
- (c) Prove that the metric space (\mathbb{R}^2, d_1) is complete where the metric d_1 is given by $d_1((x_1, y_1), (x_2, y_2)) = \max\{|x_1 x_2|, |y_1 y_2|\}.$
- (d) Show that the function $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = (x-a)^2(x-b)^2 + x$, takes the value $\frac{a+b}{2}$ for some value of $x \in \mathbb{R}$. (distance in \mathbb{R} being usual)
- (e) Is it true that interior and closure of a compact set is compact? Justify.
- (f) Show that $[0,1)\subset (\mathbb{R},d)$ with d usual distance on \mathbb{R} , is not sequentially compact.

Page2 of 2

- 3. (a) Attempt any One of the following.
 - (i) Consider the quasi-linear equation P(x,y,z) p+Q(x,y,z) q=R(x,y,z) where P,Q and R are continuously differentiable functions on a domain $\Omega \subseteq \mathbb{R}^3$. If S:z=u(x,y) is the surface obtained by taking the union of characteristic curves of the given p.d.e. where u(x,y) is a continuously differentiable function then prove that S is the integral surface of the p.d.e.
 - (ii) Write a short note on the characteristic strip and characteristic curve for a non linear first order partial differential equation f(x, y, z, p, q) = 0.
 - (b) Attempt any Two of the following.
 - (i) Find the solution of the initial value problem for the quasi-linear equation p-z q=-z for all y and x>0 with the initial data curve $C: x_0(s)=0, y_0(s)=s, z_0(s)=-2s, \quad -\infty < s < \infty.$
 - (ii) Find the initial strip for $z = \frac{1}{2}(p^2 + q^2) + (p x)(q y)$ passing through the x-axis.
 - (iii) Find the characteristics differential equations and the characteristic strips of pq = xy.
- 4. Attempt any Three of the following.

(15)

- (a) Find a partial differential equation satisfied by $z = f(x^2 + y^2)$.
- (b) Show that $(x-a)^2 + (y-b)^2 + z^2 = 1$ is a solution of $z^2(1+p^2+q^2) = 1$.
- (c) Show that the partial differential equations xp = yq and z(xp + yq) = 2xy are compatible.
- (d) Find a complete integral of the partial differential equation z = px + qy + pq.
- (e) For the partial differential equation $x^3 p + y(3x^2 + y) q = z(2x^2 + y)$ and the initial data curve $x_0(s) = 1$, $y_0(s) = s$, $z_0(s) = s^2 + s$, find the value of

$$\frac{dy_0}{ds} P\Big(x_0(s), y_0(s), z_0(s)\Big) - \frac{dx_0}{ds} Q\Big(x_0(s), y_0(s), z_0(s)\Big)$$

where $x^3 p + y(3x^2 + y) q = z(2x^2 + y)$ is compared with P(x, y, z) p + Q(x, y, z) q = R(x, y, z).

(f) Show that the characteristic curves of z p + q = 0 containing the initial data curve

$$C: x_0(s) = s, y = y_0(s) = 0, z_0(s) = f(s) \text{ where } f(s) = \begin{cases} 1 & \text{if } s \le 0, \\ 1 - s & \text{if } 0 \le s \le 1, \\ 0 & \text{if } s > 1. \end{cases}$$

are straight lines given by x = y f(s) + s.

XXXXXXXXX

2 of 2

Paper / Subject Code: 97244 / Mathematics : Elective A - Partial Differential Equations (R 2022)

TYBSC (09/11/2022) 10.36 Am - 01.00 pm

Duration: 2 ½ Hrs Marks: 75

N.B.: (1) All questions are compulsory.

- (2) Figures to the right indicate marks.
- 1. (a) Attempt any One of the following:

(8)

(i) Prove that the elimination of arbitrary function ϕ from the equation $\phi(u, v) = 0$, where u and v are functions of x, y and z (z is assumed to be a function of x and y), gives the partial differential equation

$$\frac{\partial(u,v)}{\partial(y,z)}*p+\frac{\partial(u,v)}{\partial(x,z)}*q=\frac{\partial(u,v)}{\partial(x,y)}$$

- (ii) If z = F(x, y; a) is a one-parameter family of solutions of the partial differential equation f(x, y, z, p, q) = 0 where $p = z_x = F_x, q = z_y = F_y$, prove that the envelope of this family, if it exists, is also a solution of f(x, y, z, p, q) = 0.
- (b) Attempt any Two of the following.

-(12

- (i) Find a partial differential equation satisfied by $z = f\left(\frac{y}{x}\right)$ where f is real valued function on $\mathbb{R} \times \mathbb{R}$.
- (ii) Find the singular integral of $f(x,y,z,p,q)=z-px-qy-p^2-q^2=0$ using the three equations: f(x,y,z,p,q)=0, $f_p(x,y,z,p,q)=0$, $f_q(x,y,z,p,q)=0$.
- (iii) Solve the Lagrange's partial differential equation $\tan x p + \tan y q = \tan z$.
- 2. (a) Attempt any One of the following:

(8)

- (i) (I) If $p = \phi(x, y, z)$ and $q = \psi(x, y, z)$ are obtained by solving f(x, y, z, p, q) = 0, g(x, y, z, p, q) = 0 for p and q then state the necessary and sufficient condition for the equation $dz = \phi(x, y, z) dx + \psi(x, y, z) dy$ to be integrable.
- (II) Show that the first order partial differential equations p=M(x,y) and q=N(x,y) are compatible if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
- (ii) State Charpit's Auxiliary equations and explain the Charpit's method to find a complete integral of a given partial differential equation f(x, y, z, p, q) = 0.
- (b) Attempt any Two of the following.

(12

- (i) Solve the compatible partial differential equations xp-yq=x and $x^2p+q=xz$ and find a common solution.
- (ii) Show that $dz = \phi(x, y, z) dx + \psi(x, y, z) dy$ is integrable if and only if

$$-\phi \psi_z + \psi \phi_z - \psi_x + \phi_y = 0.$$

(iii) Find a complete integral of $x^2p^2 + y^2q^2 - 4 = 0$.