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21  INTRODUCTION: . |
ter we have studied first order linea,

In the previous chap ider second ord
: i ions. In this chapter, we consl el
differential equati geneous and non-homogeneoys

linear differential equation, homo ou | _
equations. Different methods of obtamning general solutions. tg

these types of equations.

These types of equations play an importanf 1'01":'
the motion of a spring. These equations describe sim mon
motion, oscillations of mass spring system, RLC-Circuit,
oscillations of a simple pendulum, etc.

We also consider the homogeneous differential equations with
constant coefficients. We also present method of undetermined
coefficients and method of variation of parameters for non-
homogeneous equations. |

Existence and uniqueness theorem is the tool which makes it
possible for us to conclude that there exists only one solution to
second order differential equations. We are going to state this

~ theorem and use to solve the problems.

Let us start with the ‘general form of second order linear
differential equation. . | ;

in the study of
ple harmonic

22 SECOND ORDER LINEAR  DIFFERENTIAL

~ EQUATION:
The general form of the second order linear differential
equatlonl'sd)-(2 +de +Qy&=R i - e (1)

where P, Q and R are functions of x or constants.
This differential equation can also be written as y” 4 Py’ +

Qy=R. - ]
" We write the Initial Value Problem (IVP) as follows:

" y"+Py'+Qy=R, y(X0) = Yo, y'(x0) = y'o
Differential Operator: o ' .
Let D be the symbol which denotes differentiation w.r.t. x.




ay oo . QIJ_Q?X
- Dy =gx+ D% = D(Dy) =3, (dx ~ dx2

-115 means integration

—1-;-5 means integration twice
Lo X

ie.p (x3) = 3

' 1 1(1 1 Ixd) xh
-S43
-, Equation (1) can be written in operator form as
D2y + PDy +.Qy =R ' -

- (D*+PD +Qy=R ‘
There are two types of equatlons dependmg upon the value of
R . :

() Homogeneous:

IfR =0, the equatlon is called homogeneous

(2) Non-homogeneous:
If R # 0, the equation is called non-homogeneous.

e.g. |

@ y” +‘\/%sm y=0- a non-linear second order
differential equation. o :

(ii) y” = y is linear homogeneous second order dlfferentlal
eqution. i

(iii) y” + y’ + y = sin x linear non-homogeneous second order
differential, equation. | '

(iv) ax2y” + 'bxy' +cy=0ab ceR&c 20 is linear

homogeneous second order differential equation. This
equation is called Euler equation of order 2. '



23  VECTOR SPACE:
2.3.1 Definition:
Solution Space:

The set of solutions of a differential equation is called the
solution space. E.g. all solutions of the differential equation

y" +Py +Qy=0 | L eeein (2)

~ forma solution'space.
~ Note that y(x) = 0 is also a solution.
>. Solution set of equation (2) is non-empty.
2.3.2 Definition:
Vector Space:

The solution space of a linear homogeneous differential
equation is a vector space. ‘

That is, the set of solutions of eqﬁation (2) form a vector space
under addition and scaling, - -

Moreover this is a two dimensional real vector space. |

~. The solution sets of equations of the type y” - 2y’ -y = 0
where P = -2, Q = -1 are constants or Yy’ + (x2=x)y’ — (sin x)y = 0
where P = (x2 - x), Q = - sin x are functions of x from the vector
space. -
2.3.3 Remark:

Solutions of a non-homo

geneous differential equation do not
form a vector space.

e.g. the sum of two solutions to non-homogeneous differential
equations is not a solution in general. .
Let y; and y, are two solutions of equation (2) then y; + y, kiy:

or kayy, kiy; + kay2 are also solutions of equation (2) which is
proved by the following theorem. :

234 Theorem: ,

If yi(x) and ys(x) are any two solutions of the differential
equationy” +Py'+Qy=0. e AR



).

Then €1 yi(r) + ¢2 ya(x) is also a solution, for any constants ¢

ad
ook

[ety () =C1y1 (x) + c2y2 (x)
pifferentiating w.r.t x, twice we get
y = ayr’ + c2y?’ ‘ it
y'= ayr” + cy?” () -
substitute the values of y, y' and y” from'(2), (3) and 4)in(1)
we get
(ciyr” + €2y2") + Pcayr’ + (2y2') + Q(cayr + cay2) = 0
Taking ¢1 and ¢ common, we have |
alyr” + Py’ + Qy1) + cx(y,” + Py'2 + Qy2) = 0
By assumptions y; and y; are solutions of (1)
~y1" +Pyr’ + Qy1=0and y;" + Py, + Qy.=0
- Equation (1) is satisfied By equation (2).

:. Equation (2) i.e. y = c1y1 + coya is general solution of Equation.

Le.y"+Py' +Qy=0
235 Theorem:

The space of solution of the second order linear differential
equation y” + py’ + Qy = 0 forms a real vector space. -
Proof: | |

Let V denote the solution space. Let y1(x), y2(x) € V from 2.3.1

taking ¢; = c; = 1 we get y1 + y2 € Vand c1 y1 € V for ci € R. Hence
closure property of addition and scalar multiplication is satisfied. -
It can also be seen that commulative and associative property are
also satisfied. y(x) = 0 is a solution to (1) which give the additive
idel'\'cityof\land fory1e V,-y1 € Vtakingco=-1land c2=01in
theorem 2.3.1 L -

The distributive properties of addition over scalar
Multiplication hold as |



c(y1 +y2) =cy1+cy2
and (¢ +C2) y1 = Q1y1 + QY1

Further ci(c2 y1) = (c1 C2)y1
and 1.y = y1 clearly holds which proves that V is ;

vector space.

2.4
2.4.1 Definition:

Wronskian: |
Eet yi(x) and y2(x) are solutions of the equation (2). Then define

a determinant.

WRONSKIAN AND LINEAR INDEPENDENCE:

W(yh y:)— Y Y: YIyz'...yzYIr

W is called Wronsklan deterrnmant or Wronsklan of yi and V2.

24.2 Theorem -

Let y1(x) and yz(x) be any two solutlons to the differential
equation y" + Py + Qy = O on [a, b], then. Their Wronsklan
W(ys, y2) is either identically zero or never zero.

Proof: Wy y) =y1y;-y,y;
W =y +Y1Y2- Y2 ¥i - Vs y;
=Y1Y1-Y2 Y1 |
- y1(x) and y»(x) are solutlons toy" + Py’ + Qy 0
R Y1+PY1+QY1—0 , | | ...(*)'
Y2 "‘Pz"‘QYz‘ = | e (%)

(") xy,gives y, 'y'l' + Py, 'yz +Qy; Yo =0

(") xy18ives y,y;+Py;y;+Qyy,=0

Subtracting  y, Y1~ Y12+ Ply; y, - Y2y1) =0
~W'-PW =0 '




AW

s ‘dw T PW =0
: dW
> o =-PW _=>W=c.e'IPd"
Note that e IPdx is an exponential function and for any value of

p this value is never zero.

Hence W = ¢ el PdX i identically zero if ¢ = 0 and if ¢ # 0 then
W is never zero. ' ' '

Hence either the wronskraion is identically zero of Wronskian
is never zero. sl | |

243 Definition:
Linearly Dependent:

Let y1, y2: [a, b] & R be two real valued functions. y1 (x) and y
(x) are said to be linearly dependant on [a, b] if there exists a real
number o such that y; (x) = a y2 () V x € [a, b]. y1 and y; are said
to be linearly independent if they are not linearly dependant on

[a, b]. |
244 Theorem: I

Let yi(x) and y(x) be any two solutions to the differential
equation y'+ Py’ + Qy = 0 on the interval [a, b], then their
Wronskian W(y1, y2) = y; y1 = Y2 Y’ is identically zero if and only if .
y1(x) and y,(x) are linearly dependant on [a, b]. -
Proof: e | _ 1% ‘

Suppose yi(x) and ya(x) are linearly dependant on [a, b]. If
either of yi(x) or yz(x) is identically zero on [a, b] then clearly
W(yi, y2) = 0. Hence we now assume y1(x) #0 and y2(x) # 0 and Z}'
and y; are linearly dependant on [a, b]. ' -

= y1 (x) = a y2 (x) for some o € RVxe[a,b]witi\a¢0

>yi=ay; i

and Wiy, y2) =V1Ys-Y2Y1 =@y y2-Y2(ay)=0
| =a(y2-Yy)=0



is identically zero. If y1 (x) is
Conversly suppose W (y1, y2) is identica
identically zero, then for any y2 (x), y1 (x) = 0 = 0.y2 (x) for al|
x € [a,b] = y1and y2 are linearly dependant. )
not identically zero on [a, b] an

Now we assume that yi(x) is ; R
there exists an Interval

y: is continuous on: [a, b]. Hence
[¢, d] < [a, b] in which yi (x)#0 Vv x € [c, d]

W (y1, y2) = Y1 Y2 - Y2 Y1 is identically zero on [a, b]
Since y1 (x) # 0 V x € [¢, d] we divide W (y1, y2) = ¥; Y2 - Y2 Vi
by y3(x) V x € [c, d].

=>Y1Y2*Y2Y1=0 v xelod]
=>[Y—ZJ=O V  xelcd]
Y1 .

Integrating Yﬁ = k where k is a constant

=>yx)=kyi(x) V xelcd]
Thus the functions y2 and ky: have equal values in [c, d] and
value of their derivatives in the interval are also equal as
y2 (X) =ky; (x)

| =y () | |

Thus y> and k y1 have equal values in [c, d]  [a, b] and equal
derivatives in [c, d] c [a, b]. By Existence and Uniqueness theorem
of solution of second order homogeneous linear differential |
equation. - ~ 30 | 3 ¥

y2(x) =ky1(x) Vxelab]

= Y1and y; are linearly dependant on [a, b]. | |

24.5 Remark: ‘ |

The above theorem indicates that the Wrongkian W(yi, y2) is
never zer0 if and only if yi(x) and y2(x) are linearly independent.



gustration 1

yl=cosx, y2 = sinx, XxeR

golution:
COS X sin x
WL YD = | _gin x cos x|= €082 X +sin2 x = 1
w=1 #0

Y and y: are linearly independent.
[llustration y

y1= €% y2 = e
Solution:
eax e—ax '
W(Ylf yz) - aeax —ge-ax =-a-a=-2a

If a =0 then y; and y; are linearly dependent.
If a # 0 then y; and y, are linearly independent.
[llustration 3:
y1=x2, y2=x%logx, x#0
~ Solution: |

x2  x2logx
Wy y2) = | 2x x + 2xlogx

5. Wy, y2) = (@ + 2x3 log x) — (23 log x)’ |
S Wy y)=x20 v x#0
.~ yiand yz are linearly independent.
 llustration 4:
C yi=x|x|, y2=x3, xe€R
Solution:
y1 =x¥-x) ifx<0
=x2(x) ifx20
Forx <0
-X3

; x3
Wy, y2) = | 3x2 3x2

= =3x5 + 3x5 = 0



Forx 2 0

3 X3
Wiyn y2) = | 3x2 3x2
. W(xy, y2) =0 forx € R
~. y1and y2 are linearly dependent..

=3X5—3X5=0-

Illustratipn 5:
'yy = cos 21X, Y2 =Sin 2mx

Solution: .
%  cos2mx . sin2mx
Wy y2) = | o ¢ sin 2nx 27 €OS 27X

= 21 COs? 271X + 27 sin2 27X
W(y;,, y2) = 2m (cos? 2mx + sin2 21tx) 2n#0
.. y1, yzarelinearly independent.

EXERCISE 2.1

Determine whether the following functlons y1 and y2 are linearly
dependent or independent.

(1) y1=2sin?x, | - y2=1-cos?x
2) y1=xy, | ya=x2 .
(3) yi1=cosax, . . y2=sin ax, az0
4 yi=logx, et ya=log xn, n>0
(B) yi=x% . 17l =50
(6) yi=ex, : ' Y2 = xex

ANSWER 2.1

(1), (4) & (5) linearly dependent. -
(2), (3) & (6) linearly independent.

25 GENEARL SOLUTION OF  HOMOGENEOUS
DIFFERENTIAL EQAUTION: |

2.5.1 Theorem:

Let yi(x) and ys(x) be linearly independent solutions of the
' homogeneous differential equaltion y" + P (x) y' + Q (x) y = 0 - (*)



= e . A% 9

on ﬂ;e interval [a, b], then ¢; y1(X) + ¢z y2 (X) is the general solution
of (*)-

proof: _
Let y(x) be any solution to (*) we will show that the constants ¢;
and ¢z can be found so that y(x) = c1y;(x) + ayAX) - Vxelabl.

By Existenct-:: and Unique theorem of solution of linear
- homogeneous differential equation if x, € [a, b] any point and Yo -
and yp are any two real numbers then (*) has a unique solution

y(x) such that y(xo) = Yo afld Yo(Xo) = yo.

. In otherwords, a solution of (*) is completely determined by its
! value at a point and the value of its derivative at the same point.

' y1(x) and yx(x) are 2 linearly independent solutions of (*). By
theorem 2'.3.1, c1y1(x) + C2y2(x) is also a solution .o_f *).

Since y1(x) and yz(x) are linearly independent by theorem 2.4.4
their Wrongkian W(y1, y») is never zero (i-e)

WL y2) =y175-y2¥1#0  Vxela bl
Let xo € [a, b'] be any point in [a, b]. Consider the
two equations c; y1 (xo) +C2 y2 (X0) =y (o)
and - a1y (x0) + 2y, (Xo) =y (xo)

The above two simultaneous equations in ¢; and ¢z will have a
unique solution if the determinant )

y1(X0) Y2 (Xo)
y1 (x9) ¥2 (Xo)
y1 (Xp) Y2 (Xo) -
| y1(x0) y2(%0)

#0

= y1 (X0) Y3 (X0) = yy (Xo) y2 (Xo)

But

=W (y1, y2) (xo)
# 0 using theorem 2.4.4.

(x) + c2 y2 (x) both have same value at Xo

Thus y (x) and c1 y1
y { th of them also has same value at Xo- By

and the derivative of bo



uniqueness of solution we must have y (x) = ¢1 y1 (x) + ¢2 y2 (x) for
all x € [a, b).

Thus for every solution y (x) we are able to obtain constantg
c1 and ¢ such that y(x) = ¢1 y1 (x) + c2 y2 (x)

= a1 yi () + &2 y2 (x) is the general solution of (*) which
completes the proof. o

Illustration 6:

Show that ex and e- x are linearly independent solutions of
y" =y =0on any interval.

Solution: |

Let y; (x) = ex and - y2(x) =e-x

y1 () = ex, i (x) = ex

Y1 () -y1=ex—ex=0 Hence y1 (x) = ex is a solution to
y'~y=0 | | '

Further y, (x) = - e-xand ya (X) = e-x

and y, (x)‘— y2 (X) = e-x+ e-x = ) Hence y'= (x) = e-x is a solution
to o | '

y'-y=0 - ; X S T

WL YD=y1¥2-y2y1=e e -ex(@)=-1-1=-220

Hence y; and y, are linearly indpénedant solution of the
equation |

¥ yR
llustration 7:

Show that y = ¢ x + ¢; x2 is the general solution of x2 y" - 2xy'+
2y = 0 on any interval not containing zero and find the particular
- solution for which y (1) = 3 and y' (1) = 5.

Solution:
Let yi(x)=x and y;(x)=x2
y1(9=1 y1(x)=0
X2 X =2xy; +2y1=x2(0)-2x x 1 + 2.x =



-, y1(x) is a solution of the given differential equation
y, () =2x and yj (x) =2
X2 Yy = 2X Y3+ 2y2 = X2 (2) - 2x (2x) + 2x2 = 0
». y2(X) is a solution of the given differential equation
Wy y) =y1y,-y2y;
=x(2x)-x2(1)=x2#0 provided x # 0

Hence Wrongkian is not zero in any interval not containing

zero. Hence y1 and y; are linearly independent solutions. By
theorem 2.5.1,

y = €1 X + C2 X2 is the general solution of the given differential
euqaiton. '

Y =a+2xc
_ y(1)=ca+2c
Solvingy (1) =3 andy' (1) =5

Solving simultaneously we get
. ‘ GG+ =3
CG1+2¢ =5

c2=2andc =1 _
.. The particular solution is y (x) = x + 2x2
25.2 Use of a known Solution to find another:

Suppose y1 (x) is a known solution of the differential equation
Y +P(x) y' + Q(x) y =0.

We will find another solution y2 (x) to this equation so that
¥1(x) and y; (x) are linearly independent.

Theorem: _
If y; (x) is a non zero solution of the equation

y'+P(x)y +Q(xX)y=0 )

(P (x)dx .- '
‘then y, (x) = y1 () S #ef‘ % axis another sojuton o

S0 that y; (x) and y2 (x) are linearly 'independent-.



Proof: :
Lety = v(x) y(x) bea solution of ( )

so that y; + Py, + Qy2= 0
Substituting Ya =V
Y =V Vi +V'y1
ys =vy’1'+2v'yi+V"Yi

voe (1-)

and

Substituting in (1)
vy +2V Yy +Vy + P(vy +V y1)+Q(VY1) 0

v(yi+Py1+Qy) + vy +v (ZYI+PY1)_Q
But y, is a solution of (*) = y; + Py; +Qy; =0
=>Vv'y;+Vv (2y; + Py;) =0

v' - (y1+Py;) 2y
=T - B e’
v Y1 ‘ y1

Integratmg log v’ =-2 log y1=f Pdx

logv' +2logy; = f Pdx.
log v’ +log y12 = f Pdx

log v’ yi2 =~ [ Pdx

vViyi2 =e
1 —(Pdx
v'=;1;ef



1 - x) dx
y,_,_._V(x) y1(x) where v(x) =fﬁe i dx

Now we show that y; (x) and y; (x) are linearly independent.
Wy, y2) =y1y2 -y2y1
.=quy{+Wyﬂ-va{'
= V' YIZ
1 —(Pdx

oo . . . .
But V' = yp2 e is never zero being exponential function

and y12 #0-
— W (y1, Y2) is never zero '

= y1and y2 are linearly independent.

[lustration 8: :
Find the general solution of the following equation given
ji(x)=sinxisa solution of the differential equation y” +y =0.

- Solution: . |
Lety2 (x) = v(x) sin x be a solution to the equation y” +y = 0

i Sy :
Then v (x) = J—E e-f ry dx
~ Here p(x) =0and y1 (x) = sin x
v(x) = J sin2 x ed dx =f cosec? x dx
=-cotx

y2 (x) =—c0txsin>g=4cosx-

the y(x) = c1 sinx + c2 (= €08 X) — ¢ sin X + C2C08 X 1
general solution of y"' +Y = 0. -

e f ier the other linearly independent soluti

q' ahon (1 - x2) y" eie zxyf + zy =0 given yl g

on to the differential
is a solution.



Solution:

y2 (x) =v (x) y1 (X)
2 e—fP dx

Rewriting the equation in the standard form

2x_ 2
“1-x2Y T1-x

, 2x
— ((Pdx flTE
ef . =e * dx

=~ log (1-x2) _

where '.v(x) fy

’

- 2X
: 4 y=0 Herep(x)=7_,2

1
1-x2

i 1

y2 (x) = xv(X)——1+xlog(l ’3

The gengral solution is y (x) = ¢1 y1 (x) + ¢ y2 (x)

=C1x+cz(xlogG;);)_1) :




()

k)

@

©
(©

(7)

(8)

EXERCISE 2.2

Show that y = ¢; ex + ¢; e is the general solution of y"’ - 3y'+2y=0

on any interval and find the particular solution for which y (0) = -1
and y' (0) = 1.

Show that y = ¢; e + ¢; e2x is the general solution of y"’ — 4y’ + 4y

= 0 on any interval and find the particulars solution for which
y(@©)=2andy' (0) =1.

1 ,
Verify that y1 = x"2 is a solution of the equation x2 y"' + Xy’ +
(Xz -‘) y = 0 over any interval of positive values of x :and find the

general solution of the differential equation.

Prove that y; = x is a solution of the followmg equatlons and find
their genenral solution.

1

W y" -3 1y P x—1y =1

(i) x2 y" + 2xy' -2y = 0 .

Find the linearly independent solution of the equation

xy" —(2x + -1) y' + (x+1) y =0 given that y; = ex is a solution.
Show tht y = ¢1 (sin x - cos x) + cze-x is the general solution of
y" +(1 —cosXx)y' —ycotx=0.

Find the general solution of sin? x y" 2y 0 given that y =cotxis
a solution.

‘Find the general solution of x2 y'+xy' -9y =0 given that y = x3

=x3isa
~ solution. . . .

9)

(1)
Q)

| Q)
- (4)

Verify that (1 -x?)isa solution of the equation
x (1= y" = (1-5) (1-3x2) y' + 4x (1 +x3) y = 0

and find the general function.

ANSWER 2,2
y = — 3e* + 2e* |
y = 2e2 - 3xe®

1 1
y =c1%?2 sinx+c:x? COS X

(i)y=c1x+cze*' () y=cx+cx2



(5) y=cex+c2x?ex
(7) y=ccotx+c2(l-xcotx)
8 y=cax®+c X3 i
@ y=(1-x)[a+clgl-x3]



