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C H A P T E R  1 

Introduction to Calculus 


1.4 Velocity and Distance 

The right way to begin a calculus book is with calculus. This chapter will jump 
directly into the two problems that the subject was invented to solve. You will see 
what the questions are, and you will see an important part of the answer. There are 
plenty of good things left for the other chapters, so why not get started? 

The book begins with an example that is familiar to everybody who drives a car. 
It is calculus in action-the driver sees it happening. The example is the relation 
between the speedometer and the odometer. One measures the speed (or velocity); 
the other measures the distance traveled. We will write v for the velocity, and f for 
how far the car has gone. The two instruments sit together on the dashboard: 

Fig. 1.1 Velocity v and total distance f (at one instant of time). 

Notice that the units of measurement are different for v and f.The distance f is 
measured in kilometers or miles (it is easier to say miles). The velocity v is measured 
in km/hr or miles per hour. A unit of time enters the velocity but not the distance. 
Every formula to compute v from f will have f divided by time. 

The central question of calculus is the relation between v and f. 
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Can you find v if you know f ,  and vice versa, and how? If we know the velocity over 
the whole history of the car, we should be able to compute the total distance traveled. 
In other words, if the speedometer record is complete but the odometer is missing, 
its information could be recovered. One way to do it (without calculus) is to put in 
a new odometer and drive the car all over again at the right speeds. That seems like 
a hard way; calculus may be easier. But the point is that the information is there. 
If we know everything about v,  there must be a method to find f .  

What happens in the opposite direction, when f is known? If you have a complete 
record of distance, could you recover the complete velocity? In principle you could drive 
the car, repeat the history, and read off the speed. Again there must be a better way. 

The whole subject of calculus is built on the relation between u and f .  The question 
we are raising here is not some kind of joke, after which the book will get serious 
and the mathematics will get started. On the contrary, I am serious now-and the 
mathematics has already started. We need to know how to find the velocity from a 
record of the distance. (That is called &@erentiation, and it is the central idea of 
dflerential calculus.) We also want to compute the distance from a history of the 
velocity. (That is integration, and it is the goal of integral calculus.) 

Differentiation goes from f to v; integration goes from v to f .  We look first 
at examples in which these pairs can be computed and understood. 

CONSTANT VELOCITY 

Suppose the velocity is fixed at v = 60 (miles per hour). Then f increases at this 
constant rate. After two hours the distance is f = 120 (miles). After four hours 
f = 240 and after t hours f = 60t. We say that f increases linearly with time-its 
graph is a straight line. 

4 velocity v ( t )  4 distancef ( t )  

v 2 4 0 ~ ~ s 1 ~ = " = 6 04 
Area 240 : I 

time t time t 

Fig. 1.2 Constant velocity v =60 and linearly increasing distance f=60t. 

Notice that this example starts the car at full velocity. No time is spent picking up 
speed. (The velocity is a "step function.") Notice also that the distance starts at zero; 
the car is new. Those decisions make the graphs of v and f as neat as possible. One 
is the horizontal line v = 60. The other is the sloping line f = 60t. This v, f ,  t relation 
needs algebra but not calculus: 

if v is constant and f starts at zero then f = vt. 

The opposite is also true. When f increases linearly, v is constant. The division by 
time gives the slope. The distance is fl = 120 miles when the time is t 1  = 2 hours. 
Later f' =240 at t ,  = 4. At both points, the ratio f / t  is 60 miles/hour. Geometrically, 
the velocity is the slope of the distance graph: 

change in distance - vt
slope = - v.

change in time t 
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1.1 Velocity and Distance 

Fig. 1.3 Straight lines f = 20 + 60t (slope 60) and f = -30t (slope -30). 

The slope of the f-graph gives the v-graph. Figure 1.3 shows two more possibilities: 

1. The distance starts at 20 instead of 0. The distance formula changes from 60t 
to 20 + 60t. The number 20 cancels when we compute change in distance-so 
the slope is still 60. 

2. When v is negative, the graph off  goes downward. The car goes backward and 
the slope of f  = -30t is v = -30. 

I don't think speedometers go below zero. But driving backwards, it's not that safe 
to watch. If you go fast enough, Toyota says they measure "absolute valuesw-the 
speedometer reads + 30 when the velocity is - 30. For the odometer, as far as I know 
it just stops. It should go backward.? 

VELOCITY vs. DISTANCE: SLOPE vs. AREA 

How do you compute f' from v? The point of the question is to see f = ut on the 
graphs. We want to start with the graph of v and discover the graph off.  Amazingly, 
the opposite of slope is area. 

The distance f is the area under the v-graph. When v is constant, the region under 
the graph is a rectangle. Its height is v, its width is t ,  and its area is v times t .  This is 
integration, to go from v to f by computing the area. We are glimpsing two of the 
central facts of calculus. 

1A The slope of the f-graph gives the velocity v. The area under the v-graph 
gives the distance f. 

That is certainly not obvious, and I hesitated a long time before I wrote it down in 
this first section. The best way to understand it is to look first at more examples. The 
whole point of calculus is to deal with velocities that are not constant, and from now 
on v has several values. 

EXAMPLE (Forward and back) There is a motion that you will understand right away. 
The car goes forward with velocity V, and comes back at the same speed. To say it 
more correctly, the velocity in the second part is - V. If the forward part lasts until 
t = 3, and the backward part continues to t = 6,  the car will come back where it started. 
The total distance after both parts will be f = 0. 

+This actually happened in Ferris Bueller's Day 08,when the hero borrowed his father's sports 
car and ran up the mileage. At home he raised the car and drove in reverse. I forget if it 
worked. 
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1u(r) = slope of f ( t )  

Fig. 1.4 Velocities + V and -V give motion forward and back, ending at f(6)=0. 

The v-graph shows velocities + V and -V. The distance starts up with slope + V 
and reaches f = 3V. Then the car starts backward. The distance goes down with slope 
-V and returns to f = 0 at t = 6 .  

Notice what that means. The total area "under" the v-graph is zero! A negative 
velocity makes the distance graph go downward (negative slope). The car is moving 
backward. Area below the axis in the v-graph is counted as negative. 

FUNCTIONS 

This forward-back example gives practice with a crucially important idea-the con-
cept of a "jiunction." We seize this golden opportunity to explain functions: 

The number v(t) is the value of the function t. at the time t. 

The time t is the input to the function. The velocity v(t) at that time is the output. 
Most people say "v oft" when they read v(t). The number "v of 2" is the velocity 
when t = 2. The forward-back example has v(2) = + V and v(4) = - V. The function 
contains the whole history, like a memory bank that has a record of v at each t. 

It is simple to convert forward-back motion into a formula. Here is v(t): 

The ,right side contains the instructions for finding v(t). The input t is converted into 
the output + V or - V. The velocity v(t) depends on t. In this case the function is 
"di~continuo~s,~ 'because the needle jumps at t = 3. The velocity is not dejined at that 
instant. There is no v(3). (You might argue that v is zero at the jump, but that leads 
to trouble.) The graph off' has a corner, and we can't give its slope. 

The problem also involves a second function, namely the distance. The principle 
behind f(t) is the same: f (t) is the distance at time t. It is the net distance forward, 
and again the instructions change at t = 3. In the forward motion, f(t) equals Vt as 
before. In the backward half, a calculation is built into the formula for f(t): 

At the switching time the right side gives two instructions (one on each line). This 
would be bad except that they agree: f (3)= 3 V . v h e  distance function is "con- 

?A function is only allowed one ~:alue,f'(r)  at each time ror ~ ( t )  
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